Slurpie

A Cooperative Bulk Data Transfer Protocol

Rob Sherwood Ryan Braud Bobby Bhattacharjee

University of Maryland

B

I Problem

» Motivation

I Problem

» Motivation
» High bandwidth client and server

I Problem

» Motivation
» High bandwidth client and server
» Internet core bandwidth under-utilized

|

I Problem

» Motivation
» High bandwidth client and server
» Internet core bandwidth under-utilized

» ... but downloading popular files is
still slow

|

I Problem

» Motivation
» High bandwidth client and server
» Internet core bandwidth under-utilized
» ... but downloading popular files is
still slow
» Mitigating Factors

» Usage patterns difficult to predict
s slashdot effect, popularity spikes, etc..

» Competing TCP Streams result in

suboptimal performance I

I Goals

» Decrease download times for large, popular
files

» Decrease download times for large, popular
files

#» Reduce load at the server

I Goals

» Decrease download times for large, popular
files

» Reduce load at the server
» Should not require server-side modification

|

I Goals

» Decrease download times for large, popular
files

» Reduce load at the server
» Should not require server-side modification

» Compatible with existing protocols;
e.g. http/ftp/etc..

|

» Decrease download times for large, popular
files

» Reduce load at the server
» Should not require server-side modification

» Compatible with existing protocols;
e.g. http/ftp/etc..

» Scalable into 10*-10% nodes

|

I Assumptions

Source server is the bottleneck

I Assumptions

Source server is the bottleneck

» A small number of popular files represents a
disproportionate amount of traffic

I Assumptions

Source server is the bottleneck

» A small number of popular files represents a
disproportionate amount of traffic

» Peers are able and willing to share content

|

I Assumptions

Source server is the bottleneck

» A small number of popular files represents a
disproportionate amount of traffic

» Peers are able and willing to share content
» If it is to their benefit

|

I Assumptions

Source server is the bottleneck

» A small number of popular files represents a
disproportionate amount of traffic

» Peers are able and willing to share content
» If it is to their benefit
» If the cost is negligible

|

I Assumptions

Source server is the bottleneck

» A small number of popular files represents a
disproportionate amount of traffic

» Peers are able and willing to share content
» If it is to their benefit
» If the cost is negligible

» Peers do not want to persist in the network

indefinitely

I Assumptions

Source server is the bottleneck

» A small number of popular files represents a
disproportionate amount of traffic
» Peers are able and willing to share content
» If it is to their benefit
» If the cost is negligible
» Peers do not want to persist in the network
indefinitely

» End-to-End data integrity check available,
e.g. mddsum

I Partial Solution

I Partial Solution

» Peers download small, random subsections,
chunks, for the source server

I Partial Solution

» Peers download small, random subsections,
chunks, for the source server

» All peers downloading a specific file form a
random mesh

|

I Partial Solution

» Peers download small, random subsections,
chunks, for the source server

» All peers downloading a specific file form a
random mesh

» Peers propagate which chunks they have,
e.g. updates, through the mesh

|

I Partial Solution

» Peers download small, random subsections,
chunks, for the source server

» All peers downloading a specific file form a
random mesh

» Peers propagate which chunks they have,
e.g. updates, through the mesh

» Peers exchange chunks, i.e. p2p

|

I Partial Solution

» Peers download small, random subsections,
chunks, for the source server

» All peers downloading a specific file form a
random mesh

» Peers propagate which chunks they have,
e.g. updates, through the mesh

» Peers exchange chunks, i.e. p2p
» Peers leave the mesh/system as soon as they

complete the file

I Partial Solution

(o)
3
il
©

I Partial Solution

I Full Solution: Outline

I Full Solution: Outline

o Use topology server to coordinate peers

I Full Seolution: Outline

o Use topology server to coordinate peers
» Random graph model for mesh

I Full Seolution: Outline

o Use topology server to coordinate peers
» Random graph model for mesh

» Bandwidth estimation to optimize update
propagation overhead

B

I Full Seolution: Outline

o Use topology server to coordinate peers
» Random graph model for mesh

» Bandwidth estimation to optimize update
propagation overhead

» Update tree data structure for fast queries

B

I Full Seolution: Outline

o Use topology server to coordinate peers
» Random graph model for mesh

» Bandwidth estimation to optimize update
propagation overhead

» Update tree data structure for fast queries
» Random back off model

B

I Full Seolution: Outline

o Use topology server to coordinate peers
» Random graph model for mesh

» Bandwidth estimation to optimize update
propagation overhead

» Update tree data structure for fast queries
» Random back off model
» Group size estimation for large groups

B

I Full Seolution: Outline

o Use topology server to coordinate peers
Random graph model for mesh

°

Bandwidth estimation to optimize update
propagation overhead

Update tree data structure for fast queries
Random back off model

°

Group size estimation for large groups
WAN and LAN experimental results

Related work and conclusions I

© o o o o

I Topology Server

» One global, well known topology server

I Topology Server

» One global, well known topology server

1. Each peer registers with the topology
server

I Topology Server

» One global, well known topology server

1. Each peer registers with the topology
server
» Alice: Register Port 12345
http://www.foo.com/bar.iso

I Topology Server

» One global, well known topology server

1. Each peer registers with the topology
server
» Alice: Register Port 12345
http://www.foo.com/bar.iso

2. Topology Server returns last) peers to
register

|

I Topology Server

» One global, well known topology server

1. Each peer registers with the topology
server
» Alice: Register Port 12345
http://www.foo.com/bar.iso

2. Topology Server returns last) peers to
register
s Server: return: {Bob:1111, Cathy:2222,

Doug:3333}, ¢ = 3

I Topology Server

» One global, well known topology server

1. Each peer registers with the topology
server
» Alice: Register Port 12345
http://www.foo.com/bar.iso

2. Topology Server returns last) peers to
register
s Server: return: {Bob:1111, Cathy:2222,
Doug:3333}, ¢ = 3

»# Intuition: last ¢ peers are most likely to

persist in the system I

I Mesh and Random Graph Model

» A peer uses seed nodes from topology server
to discover other nodes

I Mesh and Random Graph Model

» A peer uses seed nodes from topology server
to discover other nodes

» Connect to n random peers: called neighbors

B

I Mesh and Random Graph Model

» A peer uses seed nodes from topology server
to discover other nodes

» Connect to n random peers: called neighbors
» Cache node ID/updates for U neighbors

B

I Mesh and Random Graph Model

» A peer uses seed nodes from topology server
to discover other nodes

» Connect to n random peers: called neighbors

» Cache node ID/updates for U neighbors
s Incentive: More state = Better Information

B

I Mesh and Random Graph Model

» A peer uses seed nodes from topology server
to discover other nodes

» Connect to n random peers: called neighbors

» Cache node ID/updates for U neighbors
s Incentive: More state = Better Information

» Flood update information through the mesh

B

I Mesh and Random Graph Model

» A peer uses seed nodes from topology server
to discover other nodes

» Connect to n random peers: called neighbors

» Cache node ID/updates for U neighbors
s Incentive: More state = Better Information

» Flood update information through the mesh
» Periodically disconnect, and reconnect

B

I Mesh and Random Graph Model

» A peer uses seed nodes from topology server
to discover other nodes

» Connect to n random peers: called neighbors

» Cache node ID/updates for U neighbors
s Incentive: More state = Better Information

» Flood update information through the mesh
» Periodically disconnect, and reconnect

Forms random r-regular graph, where r = n

B

I Bandwidth Estimation

» Simple three state estimation based on
passive observation

I Bandwidth Estimation

» Simple three state estimation based on
passive observation

s under-utilized,throttle-back,at-capacity

|

I Bandwidth Estimation

» Simple three state estimation based on
passive observation

s under-utilized,throttle-back,at-capacity

» If under-utilized, then add more peer
connections

|

I Bandwidth Estimation

» Simple three state estimation based on
passive observation

s under-utilized,throttle-back,at-capacity

» If under-utilized, then add more peer
connections

» If no peer connections to add, then increase
update rate and number of neighbors

|

I Bandwidth Estimation

» Simple three state estimation based on
passive observation

s under-utilized,throttle-back,at-capacity

» If under-utilized, then add more peer
connections

» If no peer connections to add, then increase
update rate and number of neighbors

» If throttle-back first reduce update rate and
number of neighbors, then remove peer

connections I

I Bandwidth Estimation

» Simple three state estimation based on
passive observation

s under-utilized,throttle-back,at-capacity

» If under-utilized, then add more peer
connections

» If no peer connections to add, then increase
update rate and number of neighbors

» If throttle-back first reduce update rate and
number of neighbors, then remove peer

connections I
» Update/second changes are AIMD

I Update Tree

Possible queries:

I Update Tree

Possible queries:
» Which blocks are not in the system?

I Update Tree

Possible queries:
» Which blocks are not in the system?
» Who has block 7 ?

I Update Tree

Possible queries:
» Which blocks are not in the system?
» Who has block 7 ?

logical OR L.
Of Child —P _ { 1 1 s 1 | N
vectors /\
\ p ’ \v
1101 --- 1] 1/11---0]

001--1] <[AJ00--0 [E[10--0 [001--0]
Node 0 Node 1 Node 2 Node 3

In implementation, updates are bit vectors. I

I Random Back off Model

» Last block problem

I Random Back off Model

» Last block problem
» Solution: go to the source server with P(:)

I Random Back off Model

» Last block problem
» Solution: go to the source server with P(:)

» Discrete values: in practice P(2) works better

|

I Random Back off Model

» Last block problem
» Solution: go to the source server with P(:)

» Discrete values: in practice P(2) works better
» Approximately o for large n

|

I Random Back off Model

» Last block problem
» Solution: go to the source server with P(:)

» Discrete values: in practice P(2) works better
» Approximately o for large n

» Requires estimation of n,
l.e. number of peers in system

|

I Random Back off Model

» Last block problem

» Solution: go to the source server with P(:)

» Discrete values: in practice P(2) works better
» Approximately o for large n

» Requires estimation of n,
l.e. number of peers in system

» Significant performance increase

|

I Group Size Estimation

I Group Size Estimation

» Propagate number of neighbors, 7, with
updates: i.e. our out degree

I Group Size Estimation

» Propagate number of neighbors, n, with
updates: i.e. our out degree

» Increment hop-count field in updates

I Group Size Estimation

» Propagate number of neighbors, n, with
updates: i.e. our out degree

» Increment hop-count field in updates

» Use 7 for average degree; diameter
d=MAX(hop-count)

I Group Size Estimation

» Propagate number of neighbors, n, with
updates: i.e. our out degree

» Increment hop-count field in updates

» Use 7 for average degree; diameter
d=MAX(hop-count)

s n=0(n-1)7)

I Group Size Estimation

» Propagate number of neighbors, n, with
updates: i.e. our out degree

» Increment hop-count field in updates

» Use 7 for average degree; diameter
d=MAX(hop-count)

s n=0((n-1)7
#» Loose estimate sufficient

I Group Size Estimation

» Propagate number of neighbors, n, with
updates: i.e. our out degree

» Increment hop-count field in updates

» Use 7 for average degree; diameter
d=MAX(hop-count)

s n=0(n-1)7)
#» Loose estimate sufficient
» 33.3% error = 1 connection

|

I Group Size Estimation

» Propagate number of neighbors, n, with
updates: i.e. our out degree

» Increment hop-count field in updates

» Use 7 for average degree; diameter
d=MAX(hop-count)

s n=0(n-1)7)
#» Loose estimate sufficient
» 33.3% error = 1 connection

» Works well in simulation I

I Experiment Design

» LAN Topology

s Server on
10Mb/s link

» 48 GNU/Linux
peers 10 Mb/s

100 Mb/s

» Planet Lab
s Same Server

» 55 GNU/Linux
peers, varied

geographically I

48 Linux Clients

Results - LAN

Average Time Spent as a Function of Baseline, Downloading 100MB file of n Concurrent Clients
3 seconds between clients

180 I I I I I I I I I
http
160 L slurpie -~ -
BitTorrent -
140 - T
120 _
(0] LT
k= :
2100 | .
o) U 7'7‘;;;;-4;”—— s T
©
2]
(0]
o
(0]
o

50

n Clients

Results - LAN (continued)

CDF of Completetion Times of 48 Nodes
100 T T T T

éhnpm

CDF
(€3]
o

T
!

40 | -

30 - .

20]

10 .

0 100 200 300 400 500 600
time (s)

I Results - WAN

2.2 .
Slurpie
2 L
c
=
& 187
>
o
Q 16
g 6
S —
= 147
@
LL
1.2 ¢

0 10 20 30 40 50 60

Number of Clients I

Effects of Back Off

2 T T T T T T 40 T T T T T T T
Backing Off —— With Backoff, k=3 —— A
No Backing Off - 35 | No Backoff ----------- 1
1.8 . ” :
£ g wf -
i I %3
qg) 1.6 & o5l |
S £
g L] [®) i i
£ 1.4 5 20
— — 15 | .
g 12} . 8
i _— S 10 f i
1 _/// 1 Z
-- 5 i,
08 I “-“—-T-—— I I I I I 0 L I 1 I i MA IT\AA I /\I&kf‘ AA/\
10 15 20 25 30 35 40 45 50 0 20 40 60 80 100 120 140 160 180

Number of Clients, 3s Apart Time(s)

I Related Work

I Related Work

» Bittorrent

I Related Work

» Bittorrent
s Server support; “tit-for-tat”

I Related Work

» Bittorrent
s Server support; “tit-for-tat”

Infrastructure Based: CDNs, Akamai, Web
caches

|

I Related Work

» Bittorrent
» Server support; “tit-for-tat”

Infrastructure Based: CDNs, Akamai, Web
caches

» Requires a priori knowledge of usage
patterns

|

I Related Work

» Bittorrent
s Server support; “tit-for-tat”

Infrastructure Based: CDNs, Akamai, Web
caches

» Requires a priori knowledge of usage
patterns

o CoopNet: targets small files

|

I Related Work

» Bittorrent
» Server support; “tit-for-tat”
» Infrastructure Based: CDNs, Akamai, Web
caches
» Requires a priori knowledge of usage
patterns
o CoopNet: targets small files
» Assumes nodes will persist in network

|

I Related Work

» Bittorrent
» Server support; “tit-for-tat”
» Infrastructure Based: CDNs, Akamai, Web
caches
» Requires a priori knowledge of usage
patterns
o CoopNet: targets small files
» Assumes nodes will persist in network

» |IP/End system multicast: DVMRP, Narada,
Scribe, NICE

I Related Work

» Bittorrent
» Server support; “tit-for-tat”
» Infrastructure Based: CDNs, Akamai, Web
caches
» Requires a priori knowledge of usage
patterns
o CoopNet: targets small files
» Assumes nodes will persist in network
» |IP/End system multicast: DVMRP, Narada,
Scribe, NICE
» Require server side support

I Conclusion

I Conclusion

» Increasing number of concurrent peers
potentially decreases download times

I Conclusion

» Increasing number of concurrent peers
potentially decreases download times

» Slurpie significantly out performs
non-cooperative and Bittorrent peers

|

I Conclusion

» Increasing number of concurrent peers
potentially decreases download times

» Slurpie significantly out performs
non-cooperative and Bittorrent peers

» Random back off provides significant
performance increase

|

I Conclusion

» Increasing number of concurrent peers
potentially decreases download times

» Slurpie significantly out performs
non-cooperative and Bittorrent peers

» Random back off provides significant
performance increase

» Linux implementation
http://slurpie.sourceforge.net

|

I Future Work

I Future Work

» Slurpie proxy

I Future Work

» Slurpie proxy
» Better Security

I Future Work

» Slurpie proxy
» Better Security
» Take advantage of existing mirrors

I Future Work

Slurpie proxy
Better Security
Take advantage of existing mirrors

o o o o

Broader testing

I Future Work

Slurpie proxy

Better Security

Take advantage of existing mirrors
Broader testing

© o o o o

Effects of erasure codes, etc..

I Questions?

	Problem
	Goals
	Assumptions
	Partial Solution
	Partial Solution
	Full Solution: Outline
	Topology Server
	Mesh and Random Graph Model
	Bandwidth Estimation
	Update Tree
	Random Back off Model
	Group Size Estimation
	Experiment Design
	Results - LAN
	Results - LAN (continued)
	Results - WAN
	Effects of Back Off
	Related Work
	Conclusion
	Future Work
	Questions?

