
Slurpie
A Cooperative Bulk Data Transfer Protocol

Rob Sherwood Ryan Braud Bobby Bhattacharjee

University of Maryland

Slurpie – p.1

Problem

Motivation

High bandwidth client and server
Internet core bandwidth under-utilized
... but downloading popular files is

still slow
Mitigating Factors

Usage patterns difficult to predict
slashdot effect, popularity spikes, etc..

Competing TCP Streams result in
suboptimal performance

Slurpie – p.2

Problem

Motivation
High bandwidth client and server

Internet core bandwidth under-utilized
... but downloading popular files is

still slow
Mitigating Factors

Usage patterns difficult to predict
slashdot effect, popularity spikes, etc..

Competing TCP Streams result in
suboptimal performance

Slurpie – p.2

Problem

Motivation
High bandwidth client and server
Internet core bandwidth under-utilized

... but downloading popular files is
still slow

Mitigating Factors
Usage patterns difficult to predict

slashdot effect, popularity spikes, etc..
Competing TCP Streams result in
suboptimal performance

Slurpie – p.2

Problem

Motivation
High bandwidth client and server
Internet core bandwidth under-utilized
... but downloading popular files is

still slow

Mitigating Factors
Usage patterns difficult to predict

slashdot effect, popularity spikes, etc..
Competing TCP Streams result in
suboptimal performance

Slurpie – p.2

Problem

Motivation
High bandwidth client and server
Internet core bandwidth under-utilized
... but downloading popular files is

still slow
Mitigating Factors

Usage patterns difficult to predict
slashdot effect, popularity spikes, etc..

Competing TCP Streams result in
suboptimal performance

Slurpie – p.2

Goals

Decrease download times for large, popular
files

Reduce load at the server
Should not require server-side modification
Compatible with existing protocols;

e.g. http/ftp/etc..
Scalable into 104-106 nodes

Slurpie – p.3

Goals

Decrease download times for large, popular
files
Reduce load at the server

Should not require server-side modification
Compatible with existing protocols;

e.g. http/ftp/etc..
Scalable into 104-106 nodes

Slurpie – p.3

Goals

Decrease download times for large, popular
files
Reduce load at the server
Should not require server-side modification

Compatible with existing protocols;
e.g. http/ftp/etc..

Scalable into 104-106 nodes

Slurpie – p.3

Goals

Decrease download times for large, popular
files
Reduce load at the server
Should not require server-side modification
Compatible with existing protocols;

e.g. http/ftp/etc..

Scalable into 104-106 nodes

Slurpie – p.3

Goals

Decrease download times for large, popular
files
Reduce load at the server
Should not require server-side modification
Compatible with existing protocols;

e.g. http/ftp/etc..
Scalable into 104-106 nodes

Slurpie – p.3

Assumptions

Source server is the bottleneck

A small number of popular files represents a
disproportionate amount of traffic
Peers are able and willing to share content

If it is to their benefit
If the cost is negligible
Peers do not want to persist in the network
indefinitely

End-to-End data integrity check available,
e.g. md5sum

Slurpie – p.4

Assumptions

Source server is the bottleneck
A small number of popular files represents a
disproportionate amount of traffic

Peers are able and willing to share content
If it is to their benefit
If the cost is negligible
Peers do not want to persist in the network
indefinitely

End-to-End data integrity check available,
e.g. md5sum

Slurpie – p.4

Assumptions

Source server is the bottleneck
A small number of popular files represents a
disproportionate amount of traffic
Peers are able and willing to share content

If it is to their benefit
If the cost is negligible
Peers do not want to persist in the network
indefinitely

End-to-End data integrity check available,
e.g. md5sum

Slurpie – p.4

Assumptions

Source server is the bottleneck
A small number of popular files represents a
disproportionate amount of traffic
Peers are able and willing to share content

If it is to their benefit

If the cost is negligible
Peers do not want to persist in the network
indefinitely

End-to-End data integrity check available,
e.g. md5sum

Slurpie – p.4

Assumptions

Source server is the bottleneck
A small number of popular files represents a
disproportionate amount of traffic
Peers are able and willing to share content

If it is to their benefit
If the cost is negligible

Peers do not want to persist in the network
indefinitely

End-to-End data integrity check available,
e.g. md5sum

Slurpie – p.4

Assumptions

Source server is the bottleneck
A small number of popular files represents a
disproportionate amount of traffic
Peers are able and willing to share content

If it is to their benefit
If the cost is negligible
Peers do not want to persist in the network
indefinitely

End-to-End data integrity check available,
e.g. md5sum

Slurpie – p.4

Assumptions

Source server is the bottleneck
A small number of popular files represents a
disproportionate amount of traffic
Peers are able and willing to share content

If it is to their benefit
If the cost is negligible
Peers do not want to persist in the network
indefinitely

End-to-End data integrity check available,
e.g. md5sum

Slurpie – p.4

Partial Solution

Peers download small, random subsections,
chunks, for the source server
All peers downloading a specific file form a
random mesh
Peers propagate which chunks they have,
e.g. updates, through the mesh
Peers exchange chunks, i.e. p2p
Peers leave the mesh/system as soon as they
complete the file

Slurpie – p.5

Partial Solution

Peers download small, random subsections,
chunks, for the source server

All peers downloading a specific file form a
random mesh
Peers propagate which chunks they have,
e.g. updates, through the mesh
Peers exchange chunks, i.e. p2p
Peers leave the mesh/system as soon as they
complete the file

Slurpie – p.5

Partial Solution

Peers download small, random subsections,
chunks, for the source server
All peers downloading a specific file form a
random mesh

Peers propagate which chunks they have,
e.g. updates, through the mesh
Peers exchange chunks, i.e. p2p
Peers leave the mesh/system as soon as they
complete the file

Slurpie – p.5

Partial Solution

Peers download small, random subsections,
chunks, for the source server
All peers downloading a specific file form a
random mesh
Peers propagate which chunks they have,
e.g. updates, through the mesh

Peers exchange chunks, i.e. p2p
Peers leave the mesh/system as soon as they
complete the file

Slurpie – p.5

Partial Solution

Peers download small, random subsections,
chunks, for the source server
All peers downloading a specific file form a
random mesh
Peers propagate which chunks they have,
e.g. updates, through the mesh
Peers exchange chunks, i.e. p2p

Peers leave the mesh/system as soon as they
complete the file

Slurpie – p.5

Partial Solution

Peers download small, random subsections,
chunks, for the source server
All peers downloading a specific file form a
random mesh
Peers propagate which chunks they have,
e.g. updates, through the mesh
Peers exchange chunks, i.e. p2p
Peers leave the mesh/system as soon as they
complete the file

Slurpie – p.5

Partial Solution

C C C C C C C. . .

Slurpie – p.6

Partial Solution

C

C

C

C

C

C

C
C

C

Slurpie – p.6

Full Solution: Outline

Use topology server to coordinate peers
Random graph model for mesh
Bandwidth estimation to optimize update
propagation overhead
Update tree data structure for fast queries
Random back off model
Group size estimation for large groups
WAN and LAN experimental results
Related work and conclusions

Slurpie – p.7

Full Solution: Outline

Use topology server to coordinate peers

Random graph model for mesh
Bandwidth estimation to optimize update
propagation overhead
Update tree data structure for fast queries
Random back off model
Group size estimation for large groups
WAN and LAN experimental results
Related work and conclusions

Slurpie – p.7

Full Solution: Outline

Use topology server to coordinate peers
Random graph model for mesh

Bandwidth estimation to optimize update
propagation overhead
Update tree data structure for fast queries
Random back off model
Group size estimation for large groups
WAN and LAN experimental results
Related work and conclusions

Slurpie – p.7

Full Solution: Outline

Use topology server to coordinate peers
Random graph model for mesh
Bandwidth estimation to optimize update
propagation overhead

Update tree data structure for fast queries
Random back off model
Group size estimation for large groups
WAN and LAN experimental results
Related work and conclusions

Slurpie – p.7

Full Solution: Outline

Use topology server to coordinate peers
Random graph model for mesh
Bandwidth estimation to optimize update
propagation overhead
Update tree data structure for fast queries

Random back off model
Group size estimation for large groups
WAN and LAN experimental results
Related work and conclusions

Slurpie – p.7

Full Solution: Outline

Use topology server to coordinate peers
Random graph model for mesh
Bandwidth estimation to optimize update
propagation overhead
Update tree data structure for fast queries
Random back off model

Group size estimation for large groups
WAN and LAN experimental results
Related work and conclusions

Slurpie – p.7

Full Solution: Outline

Use topology server to coordinate peers
Random graph model for mesh
Bandwidth estimation to optimize update
propagation overhead
Update tree data structure for fast queries
Random back off model
Group size estimation for large groups

WAN and LAN experimental results
Related work and conclusions

Slurpie – p.7

Full Solution: Outline

Use topology server to coordinate peers
Random graph model for mesh
Bandwidth estimation to optimize update
propagation overhead
Update tree data structure for fast queries
Random back off model
Group size estimation for large groups
WAN and LAN experimental results
Related work and conclusions

Slurpie – p.7

Topology Server

One global, well known topology server

1. Each peer registers with the topology
server

Alice: Register Port 12345
http://www.foo.com/bar.iso

2. Topology Server returns last ψ peers to
register

Server: return: {Bob:1111, Cathy:2222,
Doug:3333}, ψ = 3

Intuition: last ψ peers are most likely to
persist in the system

Slurpie – p.8

Topology Server

One global, well known topology server
1. Each peer registers with the topology

server

Alice: Register Port 12345
http://www.foo.com/bar.iso

2. Topology Server returns last ψ peers to
register

Server: return: {Bob:1111, Cathy:2222,
Doug:3333}, ψ = 3

Intuition: last ψ peers are most likely to
persist in the system

Slurpie – p.8

Topology Server

One global, well known topology server
1. Each peer registers with the topology

server
Alice: Register Port 12345
http://www.foo.com/bar.iso

2. Topology Server returns last ψ peers to
register

Server: return: {Bob:1111, Cathy:2222,
Doug:3333}, ψ = 3

Intuition: last ψ peers are most likely to
persist in the system

Slurpie – p.8

Topology Server

One global, well known topology server
1. Each peer registers with the topology

server
Alice: Register Port 12345
http://www.foo.com/bar.iso

2. Topology Server returns last ψ peers to
register

Server: return: {Bob:1111, Cathy:2222,
Doug:3333}, ψ = 3

Intuition: last ψ peers are most likely to
persist in the system

Slurpie – p.8

Topology Server

One global, well known topology server
1. Each peer registers with the topology

server
Alice: Register Port 12345
http://www.foo.com/bar.iso

2. Topology Server returns last ψ peers to
register

Server: return: {Bob:1111, Cathy:2222,
Doug:3333}, ψ = 3

Intuition: last ψ peers are most likely to
persist in the system

Slurpie – p.8

Topology Server

One global, well known topology server
1. Each peer registers with the topology

server
Alice: Register Port 12345
http://www.foo.com/bar.iso

2. Topology Server returns last ψ peers to
register

Server: return: {Bob:1111, Cathy:2222,
Doug:3333}, ψ = 3

Intuition: last ψ peers are most likely to
persist in the system

Slurpie – p.8

Mesh and Random Graph Model

A peer uses seed nodes from topology server
to discover other nodes

Connect to η random peers: called neighbors

Cache node ID/updates for U neighbors
Incentive: More state ⇒ Better Information

Flood update information through the mesh
Periodically disconnect, and reconnect
Forms random r-regular graph, where r = η

Slurpie – p.9

Mesh and Random Graph Model

A peer uses seed nodes from topology server
to discover other nodes
Connect to η random peers: called neighbors

Cache node ID/updates for U neighbors
Incentive: More state ⇒ Better Information

Flood update information through the mesh
Periodically disconnect, and reconnect
Forms random r-regular graph, where r = η

Slurpie – p.9

Mesh and Random Graph Model

A peer uses seed nodes from topology server
to discover other nodes
Connect to η random peers: called neighbors
Cache node ID/updates for U neighbors

Incentive: More state ⇒ Better Information
Flood update information through the mesh
Periodically disconnect, and reconnect
Forms random r-regular graph, where r = η

Slurpie – p.9

Mesh and Random Graph Model

A peer uses seed nodes from topology server
to discover other nodes
Connect to η random peers: called neighbors
Cache node ID/updates for U neighbors

Incentive: More state ⇒ Better Information

Flood update information through the mesh
Periodically disconnect, and reconnect
Forms random r-regular graph, where r = η

Slurpie – p.9

Mesh and Random Graph Model

A peer uses seed nodes from topology server
to discover other nodes
Connect to η random peers: called neighbors
Cache node ID/updates for U neighbors

Incentive: More state ⇒ Better Information
Flood update information through the mesh

Periodically disconnect, and reconnect
Forms random r-regular graph, where r = η

Slurpie – p.9

Mesh and Random Graph Model

A peer uses seed nodes from topology server
to discover other nodes
Connect to η random peers: called neighbors
Cache node ID/updates for U neighbors

Incentive: More state ⇒ Better Information
Flood update information through the mesh
Periodically disconnect, and reconnect

Forms random r-regular graph, where r = η

Slurpie – p.9

Mesh and Random Graph Model

A peer uses seed nodes from topology server
to discover other nodes
Connect to η random peers: called neighbors
Cache node ID/updates for U neighbors

Incentive: More state ⇒ Better Information
Flood update information through the mesh
Periodically disconnect, and reconnect
Forms random r-regular graph, where r = η

Slurpie – p.9

Bandwidth Estimation

Simple three state estimation based on
passive observation

under-utilized,throttle-back,at-capacity
If under-utilized, then add more peer
connections
If no peer connections to add, then increase
update rate and number of neighbors
If throttle-back first reduce update rate and
number of neighbors, then remove peer
connections
Update/second changes are AIMD

Slurpie – p.10

Bandwidth Estimation

Simple three state estimation based on
passive observation

under-utilized,throttle-back,at-capacity

If under-utilized, then add more peer
connections
If no peer connections to add, then increase
update rate and number of neighbors
If throttle-back first reduce update rate and
number of neighbors, then remove peer
connections
Update/second changes are AIMD

Slurpie – p.10

Bandwidth Estimation

Simple three state estimation based on
passive observation

under-utilized,throttle-back,at-capacity
If under-utilized, then add more peer
connections

If no peer connections to add, then increase
update rate and number of neighbors
If throttle-back first reduce update rate and
number of neighbors, then remove peer
connections
Update/second changes are AIMD

Slurpie – p.10

Bandwidth Estimation

Simple three state estimation based on
passive observation

under-utilized,throttle-back,at-capacity
If under-utilized, then add more peer
connections
If no peer connections to add, then increase
update rate and number of neighbors

If throttle-back first reduce update rate and
number of neighbors, then remove peer
connections
Update/second changes are AIMD

Slurpie – p.10

Bandwidth Estimation

Simple three state estimation based on
passive observation

under-utilized,throttle-back,at-capacity
If under-utilized, then add more peer
connections
If no peer connections to add, then increase
update rate and number of neighbors
If throttle-back first reduce update rate and
number of neighbors, then remove peer
connections

Update/second changes are AIMD

Slurpie – p.10

Bandwidth Estimation

Simple three state estimation based on
passive observation

under-utilized,throttle-back,at-capacity
If under-utilized, then add more peer
connections
If no peer connections to add, then increase
update rate and number of neighbors
If throttle-back first reduce update rate and
number of neighbors, then remove peer
connections
Update/second changes are AIMD

Slurpie – p.10

Update Tree

Possible queries:

Which blocks are not in the system?
Who has block i ?

0 ... 11 0 ...1 ...1 0 ...1

0 ... 111 ...11

... 11

0 0 0 1 0 0 0 0

1 0

11

Node 0 Node 1 Node 2 Node 3

logical OR
of child
vectors

In implementation, updates are bit vectors.

Slurpie – p.11

Update Tree

Possible queries:
Which blocks are not in the system?

Who has block i ?

0 ... 11 0 ...1 ...1 0 ...1

0 ... 111 ...11

... 11

0 0 0 1 0 0 0 0

1 0

11

Node 0 Node 1 Node 2 Node 3

logical OR
of child
vectors

In implementation, updates are bit vectors.

Slurpie – p.11

Update Tree

Possible queries:
Which blocks are not in the system?
Who has block i ?

0 ... 11 0 ...1 ...1 0 ...1

0 ... 111 ...11

... 11

0 0 0 1 0 0 0 0

1 0

11

Node 0 Node 1 Node 2 Node 3

logical OR
of child
vectors

In implementation, updates are bit vectors.

Slurpie – p.11

Update Tree

Possible queries:
Which blocks are not in the system?
Who has block i ?

0 ... 11 0 ...1 ...1 0 ...1

0 ... 111 ...11

... 11

0 0 0 1 0 0 0 0

1 0

11

Node 0 Node 1 Node 2 Node 3

logical OR
of child
vectors

In implementation, updates are bit vectors.

Slurpie – p.11

Random Back off Model

Last block problem

Solution: go to the source server with P (1

n
)

Discrete values: in practice P (3

n
) works better

Approximately σ for large n
Requires estimation of n,
i.e. number of peers in system
Significant performance increase

Slurpie – p.12

Random Back off Model

Last block problem
Solution: go to the source server with P (1

n
)

Discrete values: in practice P (3

n
) works better

Approximately σ for large n
Requires estimation of n,
i.e. number of peers in system
Significant performance increase

Slurpie – p.12

Random Back off Model

Last block problem
Solution: go to the source server with P (1

n
)

Discrete values: in practice P (3

n
) works better

Approximately σ for large n
Requires estimation of n,
i.e. number of peers in system
Significant performance increase

Slurpie – p.12

Random Back off Model

Last block problem
Solution: go to the source server with P (1

n
)

Discrete values: in practice P (3

n
) works better

Approximately σ for large n

Requires estimation of n,
i.e. number of peers in system
Significant performance increase

Slurpie – p.12

Random Back off Model

Last block problem
Solution: go to the source server with P (1

n
)

Discrete values: in practice P (3

n
) works better

Approximately σ for large n
Requires estimation of n,
i.e. number of peers in system

Significant performance increase

Slurpie – p.12

Random Back off Model

Last block problem
Solution: go to the source server with P (1

n
)

Discrete values: in practice P (3

n
) works better

Approximately σ for large n
Requires estimation of n,
i.e. number of peers in system
Significant performance increase

Slurpie – p.12

Group Size Estimation

Propagate number of neighbors, η, with
updates: i.e. our out degree
Increment hop-count field in updates
Use η̄ for average degree; diameter
d=MAX(hop-count)
n = O((η̄ − 1)d)

Loose estimate sufficient
33.3% error ⇒ ± 1 connection

Works well in simulation

Slurpie – p.13

Group Size Estimation

Propagate number of neighbors, η, with
updates: i.e. our out degree

Increment hop-count field in updates
Use η̄ for average degree; diameter
d=MAX(hop-count)
n = O((η̄ − 1)d)

Loose estimate sufficient
33.3% error ⇒ ± 1 connection

Works well in simulation

Slurpie – p.13

Group Size Estimation

Propagate number of neighbors, η, with
updates: i.e. our out degree
Increment hop-count field in updates

Use η̄ for average degree; diameter
d=MAX(hop-count)
n = O((η̄ − 1)d)

Loose estimate sufficient
33.3% error ⇒ ± 1 connection

Works well in simulation

Slurpie – p.13

Group Size Estimation

Propagate number of neighbors, η, with
updates: i.e. our out degree
Increment hop-count field in updates
Use η̄ for average degree; diameter
d=MAX(hop-count)

n = O((η̄ − 1)d)

Loose estimate sufficient
33.3% error ⇒ ± 1 connection

Works well in simulation

Slurpie – p.13

Group Size Estimation

Propagate number of neighbors, η, with
updates: i.e. our out degree
Increment hop-count field in updates
Use η̄ for average degree; diameter
d=MAX(hop-count)
n = O((η̄ − 1)d)

Loose estimate sufficient
33.3% error ⇒ ± 1 connection

Works well in simulation

Slurpie – p.13

Group Size Estimation

Propagate number of neighbors, η, with
updates: i.e. our out degree
Increment hop-count field in updates
Use η̄ for average degree; diameter
d=MAX(hop-count)
n = O((η̄ − 1)d)

Loose estimate sufficient

33.3% error ⇒ ± 1 connection
Works well in simulation

Slurpie – p.13

Group Size Estimation

Propagate number of neighbors, η, with
updates: i.e. our out degree
Increment hop-count field in updates
Use η̄ for average degree; diameter
d=MAX(hop-count)
n = O((η̄ − 1)d)

Loose estimate sufficient
33.3% error ⇒ ± 1 connection

Works well in simulation

Slurpie – p.13

Group Size Estimation

Propagate number of neighbors, η, with
updates: i.e. our out degree
Increment hop-count field in updates
Use η̄ for average degree; diameter
d=MAX(hop-count)
n = O((η̄ − 1)d)

Loose estimate sufficient
33.3% error ⇒ ± 1 connection

Works well in simulation

Slurpie – p.13

Experiment Design

LAN Topology
Server on
10Mb/s link
48 GNU/Linux
peers

Planet Lab
Same Server
55 GNU/Linux
peers, varied
geographically

Switch
Ethernet

10 Mb/s
Switch

Ethernet

1 Gb/s

48 Linux Clients

. . . 100 Mb/s

Slurpie – p.14

Results - LAN

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40 45 50

Pe
rc

en
t o

f b
as

el
in

e

n Clients

Average Time Spent as a Function of Baseline, Downloading 100MB file of n Concurrent Clients
3 seconds between clients

http
non-adaptive slurpie

slurpie
BitTorrent

Slurpie – p.15

Results - LAN (continued)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

CD
F

time (s)

CDF of Completetion Times of 48 Nodes

Slurpie
BitTorrent

Slurpie – p.16

Results - WAN

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 10 20 30 40 50 60

Fa
ct

or
 Im

pr
ov

em
en

t

Number of Clients

Slurpie
Bittorrent

Slurpie – p.17

Effects of Back Off

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 15 20 25 30 35 40 45 50

Fa
ct

or
 Im

pr
ov

em
en

t

Number of Clients, 3s Apart

Backing Off
No Backing Off

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180

Nu
m

be
r o

f C
on

ne
ct

io
ns

Time(s)

With Backoff, k=3
No Backoff

Slurpie – p.18

Related Work

Bittorrent
Server support; “tit-for-tat”

Infrastructure Based: CDNs, Akamai, Web
caches

Requires a priori knowledge of usage
patterns

CoopNet: targets small files
Assumes nodes will persist in network

IP/End system multicast: DVMRP, Narada,
Scribe, NICE

Require server side support

Slurpie – p.19

Related Work

Bittorrent

Server support; “tit-for-tat”
Infrastructure Based: CDNs, Akamai, Web
caches

Requires a priori knowledge of usage
patterns

CoopNet: targets small files
Assumes nodes will persist in network

IP/End system multicast: DVMRP, Narada,
Scribe, NICE

Require server side support

Slurpie – p.19

Related Work

Bittorrent
Server support; “tit-for-tat”

Infrastructure Based: CDNs, Akamai, Web
caches

Requires a priori knowledge of usage
patterns

CoopNet: targets small files
Assumes nodes will persist in network

IP/End system multicast: DVMRP, Narada,
Scribe, NICE

Require server side support

Slurpie – p.19

Related Work

Bittorrent
Server support; “tit-for-tat”

Infrastructure Based: CDNs, Akamai, Web
caches

Requires a priori knowledge of usage
patterns

CoopNet: targets small files
Assumes nodes will persist in network

IP/End system multicast: DVMRP, Narada,
Scribe, NICE

Require server side support

Slurpie – p.19

Related Work

Bittorrent
Server support; “tit-for-tat”

Infrastructure Based: CDNs, Akamai, Web
caches

Requires a priori knowledge of usage
patterns

CoopNet: targets small files
Assumes nodes will persist in network

IP/End system multicast: DVMRP, Narada,
Scribe, NICE

Require server side support

Slurpie – p.19

Related Work

Bittorrent
Server support; “tit-for-tat”

Infrastructure Based: CDNs, Akamai, Web
caches

Requires a priori knowledge of usage
patterns

CoopNet: targets small files

Assumes nodes will persist in network
IP/End system multicast: DVMRP, Narada,
Scribe, NICE

Require server side support

Slurpie – p.19

Related Work

Bittorrent
Server support; “tit-for-tat”

Infrastructure Based: CDNs, Akamai, Web
caches

Requires a priori knowledge of usage
patterns

CoopNet: targets small files
Assumes nodes will persist in network

IP/End system multicast: DVMRP, Narada,
Scribe, NICE

Require server side support

Slurpie – p.19

Related Work

Bittorrent
Server support; “tit-for-tat”

Infrastructure Based: CDNs, Akamai, Web
caches

Requires a priori knowledge of usage
patterns

CoopNet: targets small files
Assumes nodes will persist in network

IP/End system multicast: DVMRP, Narada,
Scribe, NICE

Require server side support

Slurpie – p.19

Related Work

Bittorrent
Server support; “tit-for-tat”

Infrastructure Based: CDNs, Akamai, Web
caches

Requires a priori knowledge of usage
patterns

CoopNet: targets small files
Assumes nodes will persist in network

IP/End system multicast: DVMRP, Narada,
Scribe, NICE

Require server side support
Slurpie – p.19

Conclusion

Increasing number of concurrent peers
potentially decreases download times
Slurpie significantly out performs
non-cooperative and Bittorrent peers
Random back off provides significant
performance increase
Linux implementation
http://slurpie.sourceforge.net

Slurpie – p.20

Conclusion

Increasing number of concurrent peers
potentially decreases download times

Slurpie significantly out performs
non-cooperative and Bittorrent peers
Random back off provides significant
performance increase
Linux implementation
http://slurpie.sourceforge.net

Slurpie – p.20

Conclusion

Increasing number of concurrent peers
potentially decreases download times
Slurpie significantly out performs
non-cooperative and Bittorrent peers

Random back off provides significant
performance increase
Linux implementation
http://slurpie.sourceforge.net

Slurpie – p.20

Conclusion

Increasing number of concurrent peers
potentially decreases download times
Slurpie significantly out performs
non-cooperative and Bittorrent peers
Random back off provides significant
performance increase

Linux implementation
http://slurpie.sourceforge.net

Slurpie – p.20

Conclusion

Increasing number of concurrent peers
potentially decreases download times
Slurpie significantly out performs
non-cooperative and Bittorrent peers
Random back off provides significant
performance increase
Linux implementation
http://slurpie.sourceforge.net

Slurpie – p.20

Future Work

Slurpie proxy
Better Security
Take advantage of existing mirrors
Broader testing
Effects of erasure codes, etc..

Slurpie – p.21

Future Work

Slurpie proxy

Better Security
Take advantage of existing mirrors
Broader testing
Effects of erasure codes, etc..

Slurpie – p.21

Future Work

Slurpie proxy
Better Security

Take advantage of existing mirrors
Broader testing
Effects of erasure codes, etc..

Slurpie – p.21

Future Work

Slurpie proxy
Better Security
Take advantage of existing mirrors

Broader testing
Effects of erasure codes, etc..

Slurpie – p.21

Future Work

Slurpie proxy
Better Security
Take advantage of existing mirrors
Broader testing

Effects of erasure codes, etc..

Slurpie – p.21

Future Work

Slurpie proxy
Better Security
Take advantage of existing mirrors
Broader testing
Effects of erasure codes, etc..

Slurpie – p.21

Questions?

...?

Slurpie – p.22

	Problem
	Goals
	Assumptions
	Partial Solution
	Partial Solution
	Full Solution: Outline
	Topology Server
	Mesh and Random Graph Model
	Bandwidth Estimation
	Update Tree
	Random Back off Model
	Group Size Estimation
	Experiment Design
	Results - LAN
	Results - LAN (continued)
	Results - WAN
	Effects of Back Off
	Related Work
	Conclusion
	Future Work
	Questions?

