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I Problem

» Motivation
» High bandwidth client and server
» Internet core bandwidth under-utilized
» ... but downloading popular files is
still slow
» Mitigating Factors

» Usage patterns difficult to predict
s slashdot effect, popularity spikes, etc..

» Competing TCP Streams result in

suboptimal performance I
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» Decrease download times for large, popular
files

» Reduce load at the server
» Should not require server-side modification

» Compatible with existing protocols;
e.g. http/ftp/etc..

» Scalable into 10*-10% nodes
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I Assumptions

# Source server is the bottleneck

» A small number of popular files represents a
disproportionate amount of traffic
» Peers are able and willing to share content
» If it is to their benefit
» If the cost is negligible
» Peers do not want to persist in the network
indefinitely

» End-to-End data integrity check available,
e.g. mddsum
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» Peers download small, random subsections,
chunks, for the source server

» All peers downloading a specific file form a
random mesh

» Peers propagate which chunks they have,
e.g. updates, through the mesh

» Peers exchange chunks, i.e. p2p
» Peers leave the mesh/system as soon as they

complete the file
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I Full Seolution: Outline

o Use topology server to coordinate peers
Random graph model for mesh

°

Bandwidth estimation to optimize update
propagation overhead

Update tree data structure for fast queries
Random back off model

°

Group size estimation for large groups
WAN and LAN experimental results

Related work and conclusions I
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I Topology Server

» One global, well known topology server

1. Each peer registers with the topology
server
» Alice: Register Port 12345
http://www.foo.com/bar.iso

2. Topology Server returns last ) peers to
register
s Server: return: {Bob:1111, Cathy:2222,
Doug:3333}, ¢ = 3

»# Intuition: last ¢ peers are most likely to

persist in the system I
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I Mesh and Random Graph Model

» A peer uses seed nodes from topology server
to discover other nodes

» Connect to n random peers: called neighbors

» Cache node ID/updates for U neighbors
s Incentive: More state = Better Information

» Flood update information through the mesh
» Periodically disconnect, and reconnect

# Forms random r-regular graph, where r = n

B
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I Bandwidth Estimation

» Simple three state estimation based on
passive observation

s under-utilized,throttle-back,at-capacity

» If under-utilized, then add more peer
connections

» If no peer connections to add, then increase
update rate and number of neighbors

» If throttle-back first reduce update rate and
number of neighbors, then remove peer

connections I
» Update/second changes are AIMD
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I Update Tree

Possible queries:
» Which blocks are not in the system?
» Who has block 7 ?

logical OR L.
Of Child —P _ { 1 1 s 1 | N
vectors /\
\ p ’ \v
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In implementation, updates are bit vectors. I
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I Random Back off Model

» Last block problem

» Solution: go to the source server with P(:)

» Discrete values: in practice P(2) works better
» Approximately o for large n

» Requires estimation of n,
l.e. number of peers in system

» Significant performance increase
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I Group Size Estimation

» Propagate number of neighbors, n, with
updates: i.e. our out degree

» Increment hop-count field in updates

» Use 7 for average degree; diameter
d=MAX(hop-count)

s n=0(n-1)7)
#» Loose estimate sufficient
» 33.3% error = 1 connection

» Works well in simulation I




I Experiment Design

» LAN Topology

s Server on
10Mb/s link

» 48 GNU/Linux
peers 10 Mb/s

100 Mb/s

» Planet Lab
s Same Server

» 55 GNU/Linux
peers, varied

geographically I

48 Linux Clients




Results - LAN

Average Time Spent as a Function of Baseline, Downloading 100MB file of n Concurrent Clients
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Results - LAN (continued)
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I Results - WAN
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Effects of Back Off
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I Related Work

» Bittorrent
» Server support; “tit-for-tat”
» Infrastructure Based: CDNs, Akamai, Web
caches
» Requires a priori knowledge of usage
patterns
o CoopNet: targets small files
» Assumes nodes will persist in network
» |IP/End system multicast: DVMRP, Narada,
Scribe, NICE
» Require server side support
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I Conclusion

» Increasing number of concurrent peers
potentially decreases download times

» Slurpie significantly out performs
non-cooperative and Bittorrent peers

» Random back off provides significant
performance increase

» Linux implementation
http://slurpie.sourceforge.net
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Slurpie proxy

Better Security

Take advantage of existing mirrors
Broader testing
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Effects of erasure codes, etc..
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