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Problem

Motivation

High bandwidth client and server
Internet core bandwidth under-utilized
... but downloading popular files is

still slow
Mitigating Factors

Usage patterns difficult to predict
slashdot effect, popularity spikes, etc..

Competing TCP Streams result in
suboptimal performance
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Goals

Decrease download times for large, popular
files

Reduce load at the server
Should not require server-side modification
Compatible with existing protocols;

e.g. http/ftp/etc..
Scalable into 104-106 nodes
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Assumptions

Source server is the bottleneck

A small number of popular files represents a
disproportionate amount of traffic
Peers are able and willing to share content

If it is to their benefit
If the cost is negligible
Peers do not want to persist in the network
indefinitely

End-to-End data integrity check available,
e.g. md5sum
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Partial Solution

Peers download small, random subsections,
chunks, for the source server
All peers downloading a specific file form a
random mesh
Peers propagate which chunks they have,
e.g. updates, through the mesh
Peers exchange chunks, i.e. p2p
Peers leave the mesh/system as soon as they
complete the file
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Partial Solution
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Full Solution: Outline

Use topology server to coordinate peers
Random graph model for mesh
Bandwidth estimation to optimize update
propagation overhead
Update tree data structure for fast queries
Random back off model
Group size estimation for large groups
WAN and LAN experimental results
Related work and conclusions
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Topology Server

One global, well known topology server

1. Each peer registers with the topology
server

Alice: Register Port 12345
http://www.foo.com/bar.iso

2. Topology Server returns last ψ peers to
register

Server: return: {Bob:1111, Cathy:2222,
Doug:3333}, ψ = 3

Intuition: last ψ peers are most likely to
persist in the system
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Mesh and Random Graph Model

A peer uses seed nodes from topology server
to discover other nodes

Connect to η random peers: called neighbors

Cache node ID/updates for U neighbors
Incentive: More state ⇒ Better Information

Flood update information through the mesh
Periodically disconnect, and reconnect
Forms random r-regular graph, where r = η
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Bandwidth Estimation

Simple three state estimation based on
passive observation

under-utilized,throttle-back,at-capacity
If under-utilized, then add more peer
connections
If no peer connections to add, then increase
update rate and number of neighbors
If throttle-back first reduce update rate and
number of neighbors, then remove peer
connections
Update/second changes are AIMD
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Update Tree

Possible queries:

Which blocks are not in the system?
Who has block i ?

0 ... 11 0 ...1 ...1 0 ...1

0 ... 111 ...11

... 11

0 0 0 1 0 0 0 0

1 0

11

Node 0 Node 1 Node 2 Node 3

logical OR
of child 
vectors

In implementation, updates are bit vectors.
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Random Back off Model

Last block problem

Solution: go to the source server with P ( 1

n
)

Discrete values: in practice P ( 3

n
) works better

Approximately σ for large n
Requires estimation of n,
i.e. number of peers in system
Significant performance increase
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Group Size Estimation

Propagate number of neighbors, η, with
updates: i.e. our out degree
Increment hop-count field in updates
Use η̄ for average degree; diameter
d=MAX(hop-count)
n = O((η̄ − 1)d)

Loose estimate sufficient
33.3% error ⇒ ± 1 connection

Works well in simulation
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Experiment Design

LAN Topology
Server on
10Mb/s link
48 GNU/Linux
peers

Planet Lab
Same Server
55 GNU/Linux
peers, varied
geographically

Switch
Ethernet 

10 Mb/s
Switch

Ethernet 

1 Gb/s

48 Linux Clients

. . . 100 Mb/s
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Results - LAN
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Results - LAN (continued)
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Results - WAN
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Effects of Back Off
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Related Work

Bittorrent
Server support; “tit-for-tat”

Infrastructure Based: CDNs, Akamai, Web
caches

Requires a priori knowledge of usage
patterns

CoopNet: targets small files
Assumes nodes will persist in network

IP/End system multicast: DVMRP, Narada,
Scribe, NICE

Require server side support
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Conclusion

Increasing number of concurrent peers
potentially decreases download times
Slurpie significantly out performs
non-cooperative and Bittorrent peers
Random back off provides significant
performance increase
Linux implementation
http://slurpie.sourceforge.net
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