
ABSTRACT

Title of Dissertation: Discovering and Securing Shared Resources on the Internet

Rob Sherwood, Doctor of Philosophy, 2008

Dissertation directed by: Associate Professor Samrat Bhattacharjee and
Assistant Professor Neil Spring
Department of Computer Science

The Internet is a collection of shared resources. Internet users share bandwidth

and processing resources both in the network at routers and on the network’s edge at

servers. However, the Internet’s architecture does not prevent nodes from consuming

disproportionate resources. In practice, resource exhaustion does occur due to ineffi-

ciently scaling systems, selfish resource consumption, and malicious attack. The cur-

rent Internet architecture has limited support for both securing and identifying shared

Internet resources.

This dissertation has two main contributions. First, I demonstrate the existence of

end-host protocols that protect the availability of shared Internet resources. I consider

resource sharing with respect to cooperative, selfish, and malicious user models, and

for each case design a protocol that protects resource availability without modifying

the existing Internet infrastructure. Second, I design and validate measurement tech-

niques for discovering shared Internet resources including links and routers. Specif-

ically, I improve the completeness and accuracy of resource maps by combining em-

bedding probes, disjunctive logic programming, and information from the record route

IP option. We validate and quantify the improvement of our maps by comparison to

publicly available research networks.

Discovering and Securing Shared Resources on the Internet

by

Rob Sherwood

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:

Associate Professor Samrat Bhattacharjee and
Assistant Professor Neil Spring, Co-Chairs/Co-Advisors
Associate Professor Pete Keleher
Associate Professor Francois Guimbretiere
Professor Mark Shayman

c© Copyright by

Rob Sherwood

2008

ACKNOWLEDGEMENTS

I acknowledge and thank my co-advisors, Bobby Bhattacharjee and Neil

Spring, for their support and extreme patience. While both formidibable

mentors individually, their combined efforts are more than the sum of the

parts, much to my significant and grateful benefit.

From my measurement work, there are many people I would like to thank.

I owe Mark Huang and the rest of the PlanetLab staff for their help and pa-

tience in the early phases of debugging Sidecar and its tools. I would also

like to thank Vivek Pai and the rest of the CoDeeN project for allowing

us access to their slice, and Fritz McCall and the UMIACS staff for their

timely assistance. Also, thanks to the systems administrators at University

of British Columbia and Vrije University of Amsterdam for their help in

mapping unexplained routing behavior back to their manufacturer.

ii

TABLE OF CONTENTS

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Securing Resource Availability . 3

1.2 Improving Network Maps . 5

2 Shared Resources with Malicious Users: OptAck 7

2.1 Introduction . 7

2.1.1 An Attack Based on Positive Feedback 8

2.1.2 Road map . 9

2.2 Attack Analysis . 9

2.2.1 The Opt-Ack Attack . 9

2.2.2 Implementation Challenges 12

2.2.3 Lazy Opt-Ack . 13

2.2.4 Distributed Opt-Ack Attack 14

2.3 Amplification Factor . 15

2.3.1 Congestion Control Bounds 16

2.3.2 Application Timeouts and Growing the Congestion Window . 18

iii

2.4 Defending against Opt-Ack . 21

2.4.1 Solutions Overview . 21

2.4.2 Proposed Solution: Randomly Skipped Segments 26

2.4.3 Skipped Packet Implementation 27

2.5 Attack Evaluation . 29

2.5.1 Simulation Results . 29

2.5.2 Real World Implementation 32

2.5.3 Performance of Skipped Segments Solution 37

2.6 Related Work . 38

2.6.1 Brute Force DoS Attacks . 38

2.6.2 Efficient Attacks . 39

2.7 Discussion and Conclusion . 42

2.8 Implementing Opt-Ack . 42

2.8.1 Recovery from Overruns . 44

2.8.2 Victim’s Processing Time 46

2.8.3 Multiple ACKs Per Window and the Transition Phase 47

2.8.4 The Attacker’s Local Bandwidth 49

3 Shared Resources with Cooperative Users: Slurpie 51

3.1 Introduction . 51

3.1.1 Approach . 54

3.1.2 Roadmap . 56

3.2 Related Work . 57

3.2.1 Multicast . 57

3.2.2 Infrastructure-based Solutions 58

3.2.3 Peer-to-peer Bulk Transfer Protocols 58

iv

3.2.4 Erasure Encoding . 60

3.3 Slurpie: Protocol Details . 61

3.3.1 Mesh Formation and Update Propagation 62

3.3.2 Group Size Estimation . 65

3.3.3 Downloading Decisions . 65

3.3.4 Backing Off . 66

3.3.5 Block Size . 67

3.3.6 Bandwidth Estimation Technique 68

3.4 Experiments . 69

3.4.1 Slurpie Implementation . 69

3.4.2 Experimental Setup . 69

3.4.3 BitTorrent Setup . 70

3.4.4 Results . 71

3.4.5 PlanetLab Results . 74

3.4.6 Coordinated Backoff . 76

3.4.7 Group Size Estimation . 78

3.5 Discussion . 80

3.5.1 Topology Server . 80

3.5.2 Security Concerns . 81

3.6 Conclusions and Future Work . 82

4 Shared Resources with Selfish Users: NICE Cookies 85

4.1 Introduction . 85

4.1.1 Cooperative Systems . 86

4.1.2 Model . 88

4.2 Related Work . 90

v

4.3 Overview of NICE . 92

4.3.1 NICE Users and Pricing Policies 94

4.4 Distributed Trust Computation . 95

4.4.1 Inferring Trust on the Trust Graph 97

4.4.2 Assigning Values to Cookies 99

4.4.3 Distributed Trust Inference: Basic Algorithm 101

4.4.4 Refinements . 103

4.5 Results . 108

4.5.1 Scalability . 110

4.5.2 Robustness . 115

4.6 Simulations on a Realistic System 120

4.6.1 System Behavior . 121

4.6.2 Simulation Results . 123

4.7 Summary and Conclusions . 127

5 Resource Discovery Framework: Sidecar 129

5.1 Introduction . 129

5.2 Sidecar Design . 130

5.2.1 Unobtrusive Probing . 131

5.2.2 Sidecar API . 133

5.3 Sidecar on PlanetLab . 134

5.3.1 Non-Issues . 134

5.3.2 Unanticipated Issues . 135

5.4 Sidecar Tools . 137

5.4.1 sideping: Round Trip Time Estimator 139

5.4.2 artrat: Receiver-side bottleneck detection 140

vi

5.5 Conclusion and Future Work . 144

6 Resource Discovery With Record Route 146

6.1 Introduction . 146

6.2 Mapping with RR . 148

6.2.1 Conventional Wisdom . 148

6.2.2 Simple Topology Discovery 149

6.2.3 Router Behavior Inference 151

6.3 Sidecar Design . 154

6.4 Passenger Design . 156

6.4.1 Passenger Logic . 156

6.4.2 Data Sources . 157

6.4.3 Safety . 158

6.5 Results . 158

6.5.1 Intrusiveness . 159

6.5.2 Record Route Coverage . 159

6.5.3 Correct Alias Resolution . 160

6.5.4 MPLS Results . 161

6.6 Conclusion and Future Work . 161

7 Topology Analysis with DisCarte 167

7.1 Introduction . 167

7.2 Cross-Validating with DISCARTE 171

7.2.1 Benefits of Cross-Validation 172

7.2.2 Cross Validation Limitations: RR 174

7.3 Address Alignment . 174

vii

7.3.1 Under-Standardized RR Implementations 175

7.3.2 Topology Traps . 177

7.3.3 Ambiguity in classification 179

7.4 DISCARTE . 180

7.4.1 DLP Introduction . 181

7.4.2 Data Pre-processing . 182

7.4.3 Address Alignment with DLP 183

7.4.4 Engineering Practices and Cost Function 185

7.5 Scaling and Conflicts . 188

7.5.1 Divide and Conquer . 188

7.5.2 Unions and Conflicts . 189

7.6 Data Collection . 190

7.6.1 Data Sets . 191

7.6.2 Stoplist Probing . 191

7.6.3 Routing Loops . 192

7.7 Validation . 193

7.7.1 RR Aliases . 193

7.7.2 Comparison to Published Topologies 194

7.8 Topology Analysis . 200

7.9 Related Work . 201

7.9.1 Internet Mapping . 201

7.9.2 Learning and Inference Techniques 202

7.9.3 Traceroute Error Avoidance 202

7.9.4 Network Map Errors . 203

7.10 Record Route Redesign . 203

viii

7.11 Conclusion . 204

Bibliography 205

ix

LIST OF TABLES

2.1 Maximum theoretical flooding for various attacker speeds and options.

MB/s refers to 220 bytes/second, etc. 16

2.2 Summary of Defenses to Opt-Ack Attack 25

2.3 Average Times with Deviations for a Non-malicious Client to Down-

load a 100MB File . 32

2.4 Average bytes/s of Induced Flooding, Standard Deviation, and Ampli-

fication Factor of Attacker’s Bandwidth 36

2.5 Average Times for Client to Download a 100MB File, With Attacker

Downloading Various-Sized Files 36

2.6 Time to Download a 100MB File for Various Fix Options - SACK En-

abled . 38

2.7 Time to Download 100MB File for Various Fix Options - SACK Disabled 38

3.1 Default Slurpie Parameters . 71

3.2 % Error in Group Size Estimation 81

4.1 Effect of changing out-degree (K): N,P=nodes, paths traversed113

4.2 Effect of changing number of cookies stored (C) 113

6.1 Summary of experimental results. 165

6.2 Router alias pairs as compared to Ally. 166

x

7.1 Possible router RR implementation transitions arranged by RR delta;

deltas 3 and 4 are not shown. Juniper and Linux are written together

to save space. 186

7.2 Completeness of DisCarte-inferred links. 198

xi

LIST OF FIGURES

2.1 Opt-Ack Attack: Single Victim w/ Packet Loss (One of many victims) 10

2.2 Maximum Traffic Induced Over Time; Attacker on T1 with mss=1460,wscale=4 30

2.3 Maximum Traffic Induced By Number of Victims; Attacker on T1 . . 30

2.4 Maximum Packets Induced By Number of Victims; Attacker on T1 . . 31

2.5 Topology for Experiments . 33

2.6 Attacker and Victim Sequence Space, Measured at Victim 43

2.7 Detail: Attacker and Victim Slow Start 43

2.8 Detail: Attacker and Victim Synchronized 43

2.9 Artifact 1: Buffered ACKs . 44

2.10 Artifact 2: Victim Delay and Buffered ACKs 45

3.1 Traditional data transfer: all data is transferred from the server. 52

3.2 Slurpie: Clients form a mesh and most data can be gotten from mesh

neighbors. 52

3.3 Get seed nodes from topology server; topology server keeps constant

per file state. 60

3.4 Discover alive peers and form mesh; mesh degree depends on number

of peers. 61

3.5 Exchange updates with mesh peers; update rate controlled by bw ada-

patation alg. 61

xii

3.6 Data Transfer. Server visited only if no peer has needed block. 62

3.7 Update Tree: nodes with block zero are highlighted 64

3.8 Local area testbed setup. The server is connected using a 10Mbps link

to force a bottleneck. 70

3.9 Normalized completion time for varying number of clients 73

3.10 CDF of completion times, 48 concurrent nodes 74

3.11 Absolute completion times, 250 nodes 75

3.12 Normalized completion time vs. number of clients on the PlanetLab . 76

3.13 Normalized completion time vs. mirror time 77

3.14 Number of Connections at the server, over time 78

3.15 Performance effects of the back off algorithm 79

3.16 Number of connections at server with different numbers of clients, all

started simultaneously . 80

4.1 NICE component architecture: the arrows show information flow in

the system; each NICE component also communicates with peers on

different nodes. In this chapter, we describe the trust inference and

pricing components of NICE. 93

4.2 Example trust graph: the directed edges represent how much the source

of edge trusts the sink. 97

4.3 Different stages in the operation of the Alice→Bob search protocol.

Edges in this figure represent message flow. It is important to note that

corresponding edges in the trust graph point in the opposite direction. 101

4.4 Success ratio and no. of nodes visited (40 cookies at each node). . . . 111

4.5 CDF of errors versus oracle (40 cookies at each node, out-degree set

to 5) with varying thresholds. 112

xiii

4.6 CDF of system initialization with good and regular users. 117

4.7 Fraction of failed transactions for good users (40 cookies at each node,

512 nodes total). 118

4.8 Failed jobs over time; 80 cookies . 123

4.9 CDF of job completion times; 80 cookies 124

4.10 Succeed vs. Failed Jobs; 80 cookies 125

4.11 Cumulative distribution of failed jobs; 2000 malicious nodes 126

4.12 Failed jobs over time; 2000 malicious nodes 127

4.13 CDF of completed jobs; 2000 malicious nodes 128

5.1 Sidecar is a platform for unobtrusive measurements that provides an

event-driven interface and connection tracking to higher-level tools,

e.g., artrat, sideping. 130

5.2 Sender incorrectly assumes (shaded region) that duplicate ACKs are

from delayed, reordered, or duplicated packets. 132

5.3 Receiver incorrectly assumes (shaded region) that probes are valid re-

transmissions from sender due to lost ACK. 132

5.4 Reality: Sidecar probes are replayed data packet that generate dupli-

cate ACKs. Probes are transparent to both sender and receiver appli-

cations. 133

5.5 Sideping RTT measurements from UMD to two ICMP echo filtered

PlanetLab nodes. 138

5.6 Sideping RTTs vs ICMP Echo: Difference exposes NAT + wireless

network. 139

xiv

5.7 Overview: Artrat correlates congestion and queuing delays to do receiver-

side bottleneck location (example: bottleneck from S to R at

TTL=2). 142

5.8 Artrat Experiment: Idle connection: no bottlenecks. 143

5.9 Artrat Experiment: Data Transfer: bottleneck at 1→R, i.e., 10Mbps

link. (Data labels as in Figure 5.8) 144

6.1 Alias resolution with TTL-limited record route. 150

6.2 Multi-path route detection with TTL-limited record route (“A3” de-

noted the third interface of router A, etc.). 163

6.3 Variations in router implementations allow different topologies to gen-

erate the same trace, creating ambiguity. 164

6.4 Design layout of TCP Sidecar and Passenger. 164

7.1 Abilene topology: inferred by Rocketfuel (left, routers unresponsive to

direct alias resolution), DisCarte (middle), and actual topology (right).

Rectangles are routers with interior ovals representing interfaces. . . . 170

7.2 Partial Trace from Zhengzhou University, China to SUNY Stony Brook,

USA; inferred by DisCarte (top) and Rocketfuel-techniques (bottom).

DisCarte finds many load-balanced paths through an anonymous router

(R3) and helps determine the implementation class of each device

along the path. 171

7.3 Partial trace from Cornell to Amsterdam where probes that take different-

length paths: bottom path is one hop shorter then top. 177

xv

7.4 Varied RR implementations create ambiguous alignments between IP

addresses discovered by TR probes (A,B,C) and those discovered by

RR (X, Y, Z). We show two of fifteen possible topologies inferred

from a partial hypothetical trace from source S: rectangles represent

routers and letters are IP interfaces. RR delta is the number of new RR

entries since the previous TTL. 179

7.5 Overview of the DisCarte Topology Inference System. 180

7.6 We first align addresses in two-cliques (left) between all sources and

then subset triangles (right) to all destinations increasing overlap and

decreasing errors. 188

7.7 Number of discovered routers (partitioned by accuracy classification)

compared to published topologies. 195

7.8 Degree distribution by inference technique of Abilene, CANET, Géant,

and NLR networks. DisCarte-inferred topologies best reflect reality. . 197

7.9 Bias in DisCarte-computed topology. 199

7.10 Bias in Rocketfuel-computer topology. 199

xvi

Chapter 1

Introduction

The Internet is a collection of shared resources. Users share bandwidth on links, pro-

cessing on routers, and storage and computation at end-points. However, the Internet’s

architecture does not prevent nodes from consuming disproportionate resources. In

practice, resource exhaustion does occur due to inefficiently scaling systems, selfish

resource consumption, and malicious attack. Resource exhaustion results poor perfor-

mance and negative user experience. Given the Internet’s increasing importance in our

daily lives, what can be done to ensure that these resources remain available?

Completely redesigning the protocols and network to improve resource usage is

likely to prove impractical in terms of cost and coordination. The cost of individ-

ual routers range from tens to hundreds of thousands of dollars [150], and my work

estimates (Chapter 7) that there are approximately one hundred thousand routers de-

ployed on the Internet. Thus, any solution that could not leverage the existing routing

hardware would cost billions of dollars to implement. A compounding problem is co-

ordination. The Internet is world-wide production system, and any deployment of a

redesigned network or protocols must globally coordinated and downtime kept to a

minimum. Given the expense in modifying network hardware and the difficulty in co-

ordinating global protocol update, can resource sharing be improved without replacing

1

existing protocols or modifying the network hardware?

Answering these resource sharing questions is complicated by the absence of a

complete and accurate router-level map of the Internet. Without this map, researcher’s

understanding of the distribution and usage patterns of network resources is limited,

i.e., they do not know where the routers and links are or how they are shared. Obtaining

this map is difficult. Existing Internet protocols were not explicitly designed for mea-

surement Further, Internet Service Providers (ISPs) each know their local networks

maps, but are unwilling to publish them for fear of loss of competitive advantage. Re-

searchers use active measurements and observations to infer the network map, but the

Internet’s size, hardware diversity, and ISP policy make these maps incomplete and

inaccurate. However, active measurements are limited by administrators who confuse

measurement probes for attacks and generate “abuse reports” and even legal threats

that curtail the scope of experiments. What can be done to improve the completeness

and accuracy of the map of the Internet without causing the ire of network administra-

tors?

My thesis is that is is possible to secure and discover shared Internet resources

without global protocol redeployment or architectural support. In support of this the-

sis, my dissertation has two main contributions:

1. I design and evaluate protocols that secure the Internet’s shared resources with-

out requiring network support or global protocol redeployment. Because the

notion of security varies with respect to the attack model, I demonstrate security

in three distinct user assumptions: cooperative, selfish, and malicious users (as

defined below).

2. I design and evaluate new techniques for increasing the accuracy and complete-

ness of Internet topology discovery. These techniques leverage existing protocol

2

and hardware features, and thus can be implemented on today’s Internet.

1.1 Securing Resource Availability

Techniques for ensuring the availability of shared resources vary based on the assumed

behavior of users in the system. In this dissertation, I consider three user models—

cooperative, selfish, and malicious—where each model has an orthogonal set of prob-

lem and solutions. For each model, I describe the user behavior, the set of problems

associated with that behavior, an example of resource exhaustion, and summarize the

dissertation chapter that addresses the problem.

• Cooperative users faithfully follow prescribed protocols. Despite following the

“correct” behavior, cooperative users can cause exhaustion when resources are

not shared efficiently. Flash crowds, where many users suddenly access the same

website, i.e., the Slashdot effect, are an example of inefficiently shared resources

exhausted from cooperative users.

Chapter 3 describes Slurpie, a bulk data transfer protocol that mitigates the ef-

fects of flash crowds on web (HTTP) and file transfer (FTP) servers while reduc-

ing the average download time for users. Similar to BitTorrent [29], Slurpie users

download random subsections (“blocks”) of the file from the primary server, and

trade among other users to obtain a complete copy of the file. Slurpie works in

parallel with existing data transfer protocols, e.g., HTTP and FTP, and thus does

not require content providers to change or other global protocol redeployment.

• Selfish users deviate arbitrarily from prescribed protocols if they can increase

their personal benefit. Selfish users causes exhaustion when resources are not

shared fairly at the expense of cooperative users. Peers in a peer-to-peer file

3

sharing protocol, like BitTorrent, that cheat the protocol and share less then pre-

scribed are an example of selfish behavior.

Chapter 4 presents, NICE, a reputation-based trust and abstract resource trading

system. In NICE, users interact, and exchange signed certificates (“cookies”)

that testify to the quality of the interaction. Over time, users can transitively

learn to avoid selfish users that try to cheat them out of their resources. This

system works on top of existing protocols and hardware, so does not require

global redeployment.

• Malicious users deviate arbitrarily from prescribed protocols expressly to ex-

haust shared resources. Malicious users exhaust resources that are not shared

securely to the detriment of other users in the system. Armies of compromised

machines (BotNets) mounting a distributed denial-of-service attack, e.g., satu-

rating a link such that it is unusable, is an example of malicious behavior.

Chapter 2 describes an amplification denial-of-service attack on TCP. In the at-

tack, a malicious TCP receiver sends acknowledgments optimistically for seg-

ments that it has not received. As a result, the unwitting TCP sender is fooled

into flooding the network. Run against many TCP senders (victims) in parallel,

the attack becomes a distributed denial-of-service attack, capable of amplifying

the attacker’s bandwidth thousands or millions of times. I then describe an so-

lution, randomly skipped segments, that solves the problem without requiring

network support or global redeployment of TCP.

4

1.2 Improving Network Maps

To better understand shared resource usage, my dissertation improves the state-of-the-

art network maps using three complementary techniques: TCP Sidecar, Passenger, and

DisCarte. Each of these techniques leverages existing protocol and hardware features,

and thus do not require additional network support or protocol redeployment.

• TCP Sidecar (Chapter 5) embeds measurement probes into third-party TCP streams,

allowing probes to traverse NATs and firewalls without alerting intrusion detec-

tion systems (IDS). TCP Sidecar improves the completeness of network map-

ping by allowing probes into more of the network than firewalls, NATs, or local

security policy might otherwise allow. Sidecar probes work without additional

network, sender, or receiver support.

• Passenger (Chapter 6) makes use of the often ignored Record Router (RR) IP

option to expose mid-measurement route changes and discover IP aliases for

unresponsive routers. The information gleaned from RR also exposes vendor-

specific router implementation behavior, making it possible to identify router

manufacturer. However, the same implementation varies complicated data anal-

ysis. Using RR improves improves the accuracy by removing error caused by

mid-measurement route changes and the completeness of Internet maps by dis-

covering more IP aliases. The RR IP option is an existing part of the IP specifi-

cation, and thus this technique works with existing Internet hardware.

• DisCarte (Chapter 7) is a constraint solving system that combines three topology

discovery data sources—traceroute, record router, and observed network engi-

neering practices—into a single, unified self-consistent topology. DisCarte for-

mulates the unification process as a constraint solving problem using disjunctive

5

logic programming. Because disjunctive logic programming is exponential in

the number of inputs, DisCarte uses a divide-and-conquer scheme to first solve

overlapping subsets of the topology and then merge them back together. Dis-

Carte improves the accuracy of network topology discovery by producing the

map with least violations of observed engineering practices. Because DisCarte

works completely offline, it requires no additional network or protocol support.

6

Chapter 2

Shared Resources with Malicious Users: OptAck

2.1 Introduction

Savage et al. [127] present three techniques by which a misbehaving TCP receiver

can manipulate the sender into providing better service at the cost of fairness to other

nodes. With one such technique, optimistic acknowledgment (“opt-ack”), the receiver

deceives the sender by sending acknowledgments (ACKs) for data segments before

they have actually been received. In effect, the connection’s round trip time is reduced

and the total throughput increased. Savage et al. observe that a misbehaving receiver

could use opt-ack to conceal data losses, thus improving end-to-end performance at

the cost of data integrity. They further suggest that opt-ack could potentially be used

for denial of service, but do not investigate this further.

Here, we consider a receiver whose sole interest is exploiting opt-ack to mount

a distributed denial of service (DoS) attack against not just individual machines, but

entire networks. Specifically, we:

1. Demonstrate a previously unrealized and significant danger from the opt-ack

attack (one attacker, many victims) through analysis (Section 2.3) and both sim-

ulated and real world experiments.

7

2. Survey prevention techniques and present a novel, efficient, and incrementally

deployable solution (Section 2.4.2) based on skipped segments, whereas previ-

ous solutions ignored practical deployment concerns.

3. Argue that the distributed opt-ack attack (many attackers, many victims) has

potential to bring about sustained congestion collapse across large sections of

the Internet, thus necessitating immediate action.

2.1.1 An Attack Based on Positive Feedback

Two significant components of transport protocols are the flow and congestion control

algorithms. These algorithms, by necessity, rely on remote feedback to determine the

rate at which packets should be sent. This feedback can come directly from the net-

work [50, 89] or, more typically, from end hosts in the form of positive or negative

acknowledgments. These algorithms implicitly assume that the remote entity gener-

ates correct feedback. This is typically a safe assumption because incorrect feedback

rapidly deteriorates end-to-end performance [71]. However, an attacker who does

not care about data integrity could violate this assumption to induce the sender into

injecting many packets into the network. While not all of these packets may arrive at

the receiver, they do serve to congest the sender’s network and saturate the path from

the sender to the receiver.

In this chapter, we always assume that the attacker targets multiple victims, in order

to maximize the damage that the attack can cause Because acknowledgment packets

are relatively small (40 bytes), it is trivial for an attacker to target hundreds and even

thousands of victims in parallel. In effect, not only are each victims’ access links

saturated, but, due to over-provisioning, higher bandwidth links in the upstream ISPs

begin to suffer congestion collapse in aggregate as well. In Section 2.2.4, we argue that

8

sufficiently many attackers can overwhelm backbone links in the core of the Internet,

causing wide-area sustained congestion collapse.

2.1.2 Road map

The rest of the chapter is structured as follows. Section 2.2 describes attack pseudo-

code, implementation challenges, variants, and the distributed opt-ack attack. Section

2.3 discusses various bounds on the attacker’s bandwidth amplification. In Section 2.4,

we consider and evaluate possible solutions, propose one based on skipped segments,

and describe its implementation. In Section 2.5, we present performance numbers

of attacked machines with and without the proposed fix, in real world and simulated

topologies. Next, we discuss related work in Section 4.2. We conclude with implica-

tions of the opt-ack attack and future work in Section 4.7. Section 2.8 describes the

key observations required in a practical implementation of the opt-ack attack.

2.2 Attack Analysis

In this section we describe pseudo-code for the attack, a summary of implementation

challenges, attack variants, and the details of the distributed version of the opt-ack

attack. In Section 2.8, we present the observations we made in implementing the

attack and techniques for mitigating practical concerns.

2.2.1 The Opt-Ack Attack

Algorithm 1 shows how a single attacker can target many victims at once. Typically,

the attacker would employ a compromised machine (a “zombie” [144]) rather than

9

launch the attack directly.1 Consider a set of victims, v1 . . . vn, that serve files of vari-

ous sizes. The attack connects to each victim, then sends an application level request,

e.g., an HTTP GET. The attacker then starts to acknowledge data segments regardless

of whether they arrived or not (Figure 2.1). This causes the victim to saturate its local

links by responding faster and faster to the attackers opt-acks. To sustain the attack,

the attacker repeatedly asks for the same files or iterates through a number of files.

Internet

Attacker

Victim

Opt Acks

Flooded Return Path

Webserver

Seg: 5 101 12

Seg: 20 19 18 17 16 15

14

13

212223

Ack: 1 2 3 4 5 6 ...

Ack: 23 22 21 ...

Received Segments w/ Drops

Figure 2.1: Opt-Ack Attack: Single Victim

w/ Packet Loss (One of many victims)

The crux of the attack is that the attacker must produce a seemingly valid sequence

of ACKs. For an ACK to be considered valid, it must not arrive before the victim has

sent the corresponding packet. Thus, the attacker must estimate which packets are sent

and when, based only on the stream of ACKs the attacker has already sent. At first

this might seem a difficult challenge, but the victim’s behavior on receiving an ACK

is exactly prescribed by the TCP congestion control algorithm! The attack takes three

parameters: a list of n victims, the maximum segment size (mss), and the window

1This attack can also be mounted if the attacker is able to spoof TCP connections, either by being

on the path between the victim and the spoofed address, or from guessing the initial sequence number,

but we do not further consider it.

10

scaling (wscale) factor. In the algorithm, the attacker keeps track of each victim’s es-

timated window (wi) and sequence number to acknowledge (acki). The upper bound

of wi, maxwindow , is 65535 by default, but can be changed by the window scaling

option (see Section 2.3). Note that the attacker can manipulate each victim’s retrans-

mission time out (RTO), because the RTO is a function of the round trip time, which

is calculated by the ACK arrival rate. So, in other words, the attack can completely

manipulate the victims in terms of how fast to send, how much to send, and when to

time out.

There is a near arbitrary number of potential victims, given the pervasiveness of

large files on the Internet. Any machine that is capable of streaming TCP data is a

potential victim, including HTTP servers, FTP servers, content distribution networks

(CDN), P2P file sharing peers (KaZaa[79], Gnutella[60]), NNTP servers, or even ma-

chines with the once common character generator (‘chargen’) service.

The attack stream is difficult to distinguish from legitimate traffic. To an external

observer that is sufficiently close to the victim, such as a network intrusion detection

system (IDS), this stream is in theory indistinguishable from a completely valid high

speed connection.2 While it is common for IDSs to send out alerts if a large stream

of packets enters the local network, the stream of ACKs from the attacker is compar-

atively small (see Section 2.3 for exact numbers). It is the stream of data leaving the

network that is the problem.

Additionally, an attacker can further obscure the attack signature by sending ac-

knowledgments to more victims less often, with the total amount of traffic generated

staying constant. In other words, by generating less traffic per host and staying under

2Presumably, a monitoring system deployed closer to the attacker could detect the asynchrony be-

tween ACKs and data segments, but it is not practical to store per-flow state deep in the network.

11

the detection threshold, but increasing the total number of hosts it is not locally obvi-

ous to the victims that they are participating in an DDoS attack. As a result, short of

a globally coordination, potentially through a distributed intrusion detection system, it

is difficult for victims to locally determine if a given stream is malicious.

While Algorithm 1 works in theory, there are still challenges for the adversary to

keep ACKs synchronized with the segments the victims actually send. We address

these issues in the next section.

2.2.2 Implementation Challenges

The main challenge in implementing the attack is to accurately predict which segments

the victim is sending and ensure that the corresponding ACKs arrive at the correct time.

In Figure 2.1, the attacker injects ACKs into the network before the corresponding

segments have even reached the attacker, so remaining synchronized with the victim

can be non-trivial. Maintaining this synchronization of sequence numbers is crucial to

the attack. If the attacker falls behind, i.e., it starts to acknowledge segments slower

than they are sent, then the victim slows down, may time out, and the effect of the

attack is reduced. Similarly, if the attacker gets ahead of the victim in the sequence

space, i.e., the victim received ACKs for segments that are not yet sent, the victim

ignores these ACKs and the stream stops making progress. We refer to this condition

as overrunning the victim. Overruns can occur in three different ways: ACKs arriving

too quickly, lost ACKs, and delays at the server. However, if an attacker does overrun

the server, it is possible for the attacker to detect this condition and recover (Section

2.8).

In accordance with RFC793 [121], Section 3.4, when the sender receives ACKs

that are not in the window, it should not generate a RST, but instead an empty packet

12

with the correct sequence number. One of the tenets of the Internet design philosophy

is the robustness principle: “be conservative in what you send, and liberal in what you

accept,” and it is this principle that opt-ack exploits.

There are many ways that an overrun condition may result, most common being

the sending application stalls its output because it was preempted by another process.

In general, there are a myriad of factors that affect the sender’s actual output rate,

including: the victim’s load, application delay, the victim’s send buffer size, and the

victim’s hardware buffer. However, these factors are mitigated when the number of

victims is large. By sending ACKs to more victims, each individual victim receives

ACKs less often. This provides more time for the victim to flush its buffers, place the

sending application back into the run queue, etc.

It is worth noting that the implementation we developed is only a demonstration

of the potential severity of opt-ack. It is by no means an optimal attack. There are

a number of points where a more thorough attacker might be able to mount a more

efficient attack. However, as we note in Section 2.5, the implementation is sufficiently

devastating as to motivate immediate action.

In Section 2.8, we discuss further strategies to mitigate and recover from overrun-

ning the victim.

2.2.3 Lazy Opt-Ack

Lazy opt-ack is a variant of the standard opt-ack attack. Recall that the main difficulty

in our implementation is in remaining synchronized with the sender’s sequence num-

ber. The synchronization issue can be totally avoided if the attacker ACKs any segment

that it actually receives, independent of missing segments. This lazy variant is mali-

cious in that the attacker is effectively concealing any packet loss, thereby creating a

13

flow that does not decrease its sending rate when faced with congestion (i.e., a non-

responsive flow). Since the attacker is using the actual RTT to the victim, it generates

less traffic than the attack described in Algorithm 1. However, it is well known [51]

that in a congested network, a non-responsive flow can cause compliant flows to back

off, creating a DoS. Note that the lazy variant is different from the standard attack in

that it is impossible for the attacker to overrun the victim. This observation is precisely

what makes many existing solutions insufficient. The skipped segments solution we

provide in Section 2.4.2 protects against both the lazy and standard attacks.

2.2.4 Distributed Opt-Ack Attack

In this section, we consider the distributed case where multiple attackers run the opt-

ack attack in parallel, trivially, and with devastating effect. The only coordination

required is that each attacker chooses a different set of victims. Because a single

attacker can solicit an overwhelming number of packets (as we will see in Section

2.3) a relatively small group of attackers can cause the Internet to suffer widespread

and sustained congestion collapse.

First, because opt-ack targets any TCP server, there are millions of potential vic-

tims on the Internet. Considering P2P file distribution networks alone, Kazaa and

Gnutella have over 2 million[87, 85, 63] and 1.4 millions [90] users respectively that

each host large multimedia files. While P2P nodes are typically low bandwidth home

users, the popular content distributor Akamai runs over 14,000 [8] highly provisioned,

geographically distributed servers.

It is not immediately clear how much traffic is necessary to adversely affect the

wide-area Internet. One data point is the traffic generated from the Slammer/Sapphire

worm. In [103], Moore et al. used sampling techniques to estimate the peak global

14

worm traffic at approximately 80 million packets per second. At 404 bytes/packet, the

worm generated approximately 31GB/s of global Internet traffic. Subsequent email ex-

changes by Internet operators [106] noted that many access links were at full capacity,

and completely unusable. However, as noted in Table 2.1, it is theoretically possible

for a single attacker on a modem to generate more than enough traffic to exceed this

threshold using large wscale values. If using large wscale values were infeasible (for

example, if packets containing the wscale option were firewalled), then five attackers

on T3 connections with more typical TCP options, i.e., mss = 536 and wscale = 0,

would be sufficient to match the Slammer worm’s traffic. If each attacker targeted

sufficient number of victims, such that the load on no one victim was notably high, it

would be difficult to locally distinguish malicious and valid data streams. So, unlike

Slammer, there would be no clear local rule to apply to thwart the attack.

The traffic from the Slammer worm was not sufficient to push the core of the In-

ternet into congestion collapse. Because of the inherent difficulty in modeling wide

scale Internet phenomena, it is not clear how to estimate the number of opt-ack at-

tackers required to induce such a collapse. However, a single attacker on a modem or

a small number of other attackers can induce traffic loads equivalent to the Slammer

worm. Recent studies[10] show that there exists networks of compromised machines(

“botnets”) with over 200,000 nodes. Since each of these nodes represents a possible

attacker, a large distributed opt-ack attack could easily be catastrophic.

2.3 Amplification Factor

While it is not surprising that a victim can be induced to send large amounts of data

into the network, the actual opt-ack amplification factor is truly alarming. For example,

15

Attacker Speed mss = 536 mss = 88 mss = 536 mss = 88

(Tmax) wscale = 0 wscale = 0 wscale = 14 wscale = 14

Multiplier β = 1 1336 B/s 1958 B/s 20.9 MB/s 30.6 MB/s

Modem β = 7000 8.9 MB/s 13.1 MB/s 142.7 GB/s 209.2 GB/s

DSL β = 16000 20.4 MB/s 29.9 MB/s 326.1 GB/s 478.1 GB/s

T1 β = 193000 245.8 MB/s 360.5 MB/s 3.84 TB/s 5.63 TB/s

T3 β = 5625000 7.0 GB/s 10.3 GB/s 112.0 TB/s 164.1 TB/s

Table 2.1: Maximum theoretical flooding for various attacker speeds and options.

MB/s refers to 220 bytes/second, etc.

an attacker on a 56Kbps modem can cause victims to push 71.2Mb/s of traffic into the

network with standard TCP options. In the worst case, i.e., mss=88 and wscale=14,

the same attacker can cause up to 1.6Tb/s of traffic to be generated. See Table 2.1 for

other examples. While estimating these bounds is fairly simple (Section 2.3.1), our

analysis includes the more sophisticated issues (Section 2.3.2) of maximum number

of victims due to application time out, minimum victim bandwidths, and the time to

grow the force of the attack.

2.3.1 Congestion Control Bounds

The upper bound on the traffic induced across all victims from a single attacker is a

function of four items: the number of victims (n), and for each individual victim i, the

rate at which ACKs arrive at each victim (αi), the maximum segment size (mssi), and

the size of the victim’s congestion window (wi). Note that the attacker can use a single

ACK to acknowledge an entire congestion window of packets. The number of packets

from a single victim in the network at any one time is b wi/mssi c. If we assume a

16

standard TCP/IP 40 byte header with no options and that the link layer is Ethernet (14

byte header), then the packet size is 54 + mssi bytes. The rate of attack traffic T in

bytes/second is simply the sum across each victim of the product of the ACK arrival

rate(αi), the number of packets(b wi/mssi c), and the size of each packet (54+mssi),

or:

T =
n∑

i=1

αi ×
⌊
wi

mss i

⌋
× (54 + mssi) (2.1)

To find the theoretic maximum possible flooding rate, Tmax, we have to consider

the bandwidth the attacker dedicates to each victim (i.e., the thin dark line in Figure

2.1 from attacker to victim), which we denote βi for the ith victim. If we assume βi

is measured in bytes/second, each ACK is 40 bytes, and again assume the link layer is

Ethernet (14 byte header), then we find that βi = 54αi at maximum bandwidth. We

use β =
∑n

i=1 βi to denote the attacker’s total attack bandwidth to all victims, and

for simplicity assume that each victim has the same mss and wi, i.e., ∀i;mss i = mss

and ∀i;wi = maxwindow. Thus, substituting β, mss , and maxwindow into (2.1) and

rearranging produces:

Tmax =

⌊
β ×maxwindow×

(
1

mss
+

1

54

)⌋
(2.2)

As noted before, the maximum congestion window (maxwindow) is typically 65535.

For a wide area connection, a typical value for mss would be 536.3 Substituting these

values into (2.2) produces Tmax = 1336 β. Thus, using typical values, an attacker has

an amplification factor of 1336. In real world terms, that means an attacker on a 56

Kilo-bits/s modem (β = 7000 B/s) can in theory generate 9,351,145 B/s or approxi-

mately 8.9MB/s of flooding summed across all victims. This value is more than the

capacity of a T3 line, and close to the theoretical limit of a 100Mb Ethernet connection.

3Another typical value is mss=1460, but the effect on Tmax is minimal

17

See Table 2.1 for the amplification factor, and more examples.

For non-standard values of mss and maxwindow , the amplification factor of the

opt-ack attack is significantly magnified. Recall from RFC 793 [121] that the mss is

a 16 bit value set via TCP option by the receiver (the attacker) in the SYN packet.

Looking at (2.2), decreasing mss makes packets smaller, but increases the number of

packets sent, for a net increase in Tmax. While it is already well known [119] that

transferring large files with a low mss value can create denial of service conditions,

the damage is significantly amplified when coupled with the opt-ack attack. As noted

by Reed, the minimum mss is highly system dependent with values varying from 1 to

128 for popular OSes. For example, Windows 2000 and Linux 2.4 have a minimum

mss of 88, whereas Windows NT4’s is 1. Reed also noted that at extremely low values

of mss , the server can become CPU-bound because of high context switching from

fielding too many interrupts.

In addition, RFC 1323 [73] defines the wscale TCP option to increase maxwindow .

The attacker can use the wscale option to scale the congestion window by a factor of

214, increasing maxwindow to 65535 × 214 or approximately 109 bytes. As shown in

Table 2.1, the effect of window scaling on Tmax is dramatic. Specifically, a malicious

connection with mss=88 and wscale=14 can reach a theoretical amplification factor of

32,085,228 or over 32 million. With this level of amplification, it is possible for an

attacker on a modem targeting many victims to induce more traffic than the Slammer

worm (Section 2.2.4).

2.3.2 Application Timeouts and Growing the Congestion Window

Fortunately, there is a significant difference between the theoretical and practical ef-

fects of the opt-ack attack. First, there is a limit to the number of victims an attacker

18

can target at once. From Algorithm 1, the attacker needs to connect to each victim,

and retrieve the initial sequence number (ISN) for each connection before sending the

application data request (Line 8), e.g., an http get or ftp file request. Note that it is

very difficult for an attacker to learn new ISNs while attacking other hosts, because its

incoming links are saturated. Thus, the attacker must connect to the entire victim set,

learn their ISNs, and then launch the attack. However, if the attacker targets too many

nodes, the loop in Algorithm 1 at line 3 will take too long, and the first victim will

timeout at the application level before receiving its data request. If victims timeout be-

fore the request is sent, then the connection is dropped and the attack foiled. Note that

the minimum time for the attacker to complete a TCP connection is the time to send

the SYN packet and the time to send the ACK packet (2×(40+14) = 108 bytes). This

assumes that the attacker efficiently interleaves SYNs and ACKs to multiple victims,

such that each victim’s time to respond with the SYN-ACK is not a limiting factor.

Then, using the minimum connection time and the application timeout (ATO) value,

we can calculate maximum possible number of victims as follows:

max victims = ATO× β

108
(2.3)

Realistic ATO values are highly application dependent, and even within applications,

the timeout value is tuned to the specific environment and workload. For example, a

survey among an arbitrarily chosen set of popular websites showed ATO values for http

ranged from 135 seconds (www.google.com) down to 15 seconds (www.cnn.com). As

a further data point, the popular web server package Apache has a default timeout of

300 seconds. However, even with an ATO of 15 seconds, an attacker on a home DSL

line (128Kbps up-link, β = 16000) can attack 2307 victims in parallel.

Another limitation is that it is not possible to create more flooding than the sum

of the victims’ up-links capacities. A direct implication of (2.3) is that each victim

19

must have a minimum amount of bandwidth in order for an attack to reach the rates

described in Table 2.1. To calculate the minimum bandwidth of each victim, we divide

(2.2) by (2.3) and produce:

min victim bandwidth =
maxwindow

ATO
×

(
108

mss
+ 2

)
(2.4)

In other words, the same attacker on a home DSL line also needs each of the 2307

victims to have bandwidth in excess of 220MB/s in order to achieve 478.1GB/s in

flooding as described in Table 2.1 (ATO=15, mss = 88 , wscale = 14). Obviously, this

is not immediately practical. However, if any victim is below the minimum bandwidth

from (2.4), the result is simply that the sender saturates its outgoing link, which is

sufficiently devastating to the victim’s local network.

The last bound on the amplification is the time to grow the congestion window.

The attacker must send sufficient number of ACKs to each victim in order to in-

crease the congestion window to from its initial value (one mss) to its maximum

value(maxwindow). By Algorithm 1, as the number of victims increase, the time

between ACKs sent to an individual node diminishes. Thus, we can calculate the min-

imum time required for the attack to reach maximum effect:

min time =
54×maxwindow× n

mss× β
(2.5)

The values in Table 2.1 are upper bounds on T and may in fact never be achieved in

practice. Other factors such as the victims’ TCP send buffer size, outgoing bandwidth,

and processing capacity affect the rate at which traffic is produced (as discussed in

Section 2.8). In Section 2.5, we show that our implementation achieves nearly 100%

of Tmax in simulation.

20

2.4 Defending against Opt-Ack

In this section, we present a simple framework for evaluating different defense mech-

anisms against the opt-ack attack, and evaluate potential solutions within that frame-

work. Finally, we present one particular solution, randomly skipping segments, that

efficiently and effectively defends against opt-ack. We also describe an implementa-

tion of randomly skipped segments in detail.

2.4.1 Solutions Overview

Any mechanism that defends against opt-ack should minimally possess the following

qualities:

1. Easy to Deploy Due to the severity of the attack, any solution should be practi-

cally and quickly deployable in the global infrastructure. Minimally, the solution

should allow incremental deployment, i.e., unmodified clients should be able to

communicate with modified servers.

2. Efficient Compliant (i.e., non-attacking) TCP streams should suffer minimal

penalty under the proposed solution. Also, low power embedded network de-

vices do not have spare computational cycles or storage space. Because the

problem is endemic to all implementations, the solution needs to be efficient on

all devices that implement TCP.

3. Robust Any fix needs to defend against all variants (Section 2.2.3) of the opt-ack

attack.

4. Easy to Implement This is a more pragmatic goal, leading from the observa-

tion that TCP and IP are pervasive, and run on an diverse range of devices.

21

Any change in the TCP specification would affect hundreds (or thousands) of

different implementations. As such, a simpler solution is more likely to be im-

plemented.

In the rest of this section, we describe a number of possible defenses against opt-

ack, and present a summary of solutions in Table 2.2.

Secure Nonces

One possible solution is to require that the client prove receipt of a segment by repeat-

ing an unguessable nonce. Assume each outgoing segment contains a random nonce

which the corresponding ACK would have to return in order to be valid. Savage [127]

et al. improve on this solution with cumulative nonces. In their system, the response

nonce is a function of all of the packets being acknowledged, i.e., a cumulative re-

sponse, ensuring that the client actually received the packets it claims to acknowledge.

Unfortunately, cumulative nonces are not practically deployable. They requires

both the client and server to be modified, preventing incremental deployment. If de-

ployment was attempted, updated servers would be required to maintain backward

compatibility with non-nonce enabled clients, until all client software was updated.

As a result, updated servers would have to chose between being vulnerable to attack

or compatibility with unmodified clients. Additionally, nonces require additional pro-

cessing and storage for the sender. Calling a secure pseudo-random generator once

per packet could prove expensive for devices with limited power and CPU resources,

violating our efficiency goal.

To aid deployment, one could consider implementing nonces in existing, unmodi-

fied clients via the TCP timestamp option. The send could replace high order bits of

the timestamp with a random challenge, and any non-malicious client which imple-

22

mented TCP timestamps would respond correctly with the challenge. If a client did

not implement timestamps, the server could restrict throughput to something small,

e.g, 4Kb/s. While this improves on the deployment of nonces, this solution still has

problems. First, it loses the critical cumulative ACK property of Savage’s solution.

That is, an acknowledgment for a set of packets does not necessarily imply that all

packets in the set were received, which opens itself to the lazy opt-ack attack. Second,

as we discuss in Section 2.4.1 below, bandwidth caps are not effective.

Require ACK Alignment

One aspect of TCP that makes the opt-ack attack possible is the predictability of the

ACK sequence. Furthermore, because communication is a stream, the client can in

theory acknowledge the bytes anywhere in the sequence, not just along packet bound-

aries. Clark [39] cites the ability to retransmit one large packet when a number of

smaller packets are lost as a main benefit of this. In practice, with large buffers and

client-side window scaling, most implementations send only packet-aligned acknowl-

edgments. We could use this insight to require clients to acknowledge only along

packet boundaries, and then add a small, unpredictable amount of noise to the packet

size. For example, with equal probability, the server could send a packet of size mss

or of size (mss − 1). In this way, a client that actually received the packet would get

information that a opt-ack attacker does not have: the actual packet size. Only a client

that actually receives all of the packets could continue to correctly ACK them proba-

bilistically over time. The noise could be generated pseudo-randomly as a function of

the sequence, so storing per-outstanding-packet state at the server could be avoided.

ACK alignment suffers from many of the same problems as non-cumulative secure

nonces. Specifically, it is not secure against the lazy variant of opt-ack, and ACK

23

alignment could be expensive for low powered devices. In addition, network devices,

such as network address translation (NAT) box translating FTP or a firewall, could

change the size of or split the packet in flight. Any such change in the packet size

would result in false positives, which are unacceptable.

Bandwidth Caps

The obvious solution to an attacker consuming too many resources, as is the case with

the opt-ack attack, is to limit resource consumption. Conceivably, this could be done at

the server with a per IP address bandwidth cap, but unfortunately this is not sufficient.

First, any restriction on bandwidth can simply be over come by increasing the number

of victims. Suppose for example, that each victim sets the policy that no client can

use more than a fraction c ∈ (0, 1] of their bandwidth. Then the attacker need simply

increase the number of victims by 1/c to maintain the same total attack traffic. Further,

bandwidth caps interfere with legitimately fast clients, violating our efficiency goal.

Network Support

Since the opt-ack attack stream acts essentially as a non-responsive flow, one possible

defense would be to implement fair queuing or “penalty boxes” in the network. As [51]

notes, this is not a new problem, and there exists a wealth of research on the subject

[27, 52, 49, 35]. A similar solution would be force flows that cause congestion to solve

puzzles[153] in order to maintain their rate. However, these solutions are not currently

widely deployed and the cost of doing so would seem prohibitive.

24

Solution Efficient Robust Deployable Simple Change TCP Spec.

Cumulative Secure Nonces yes yes no yes client & server

Secure Nonces w/ timestamps yes no yes yes server only

ACK Alignment yes no yes yes server only

Bandwidth Caps no no yes yes no

Network Support yes yes no no no

Random Pauses no no yes yes server only

Skipped Segments yes yes yes yes server only

Table 2.2: Summary of Defenses to Opt-Ack Attack

Disallow Out of Window ACKs

A straightforward solution is to change the TCP specification to disallow out of win-

dow ACKs. Recall from Section 2.2.2 that our implementation runs the risk overrun-

ning the victim. If a victim sent a reset, terminating the connection, upon receipt of

an out of window ACK, the opt-ack attack would be mitigated. However, this is not a

viable solution as this opens non-malicious connections to a new DoS attack. A mali-

cious third party could inject a forged out of window ACK into a connection, causing

a reset [154]. Because the ACK is out of window, there would be no need to guess the

sequence space. Also, compliant receivers can send out of window acknowledgments

due to delays or packet reordering. For example, suppose ACKs for packets numbered

2 and 3 are sent but received in reverse order. The ACK for packet 3 would advance

the window, and then the ACK for packet 2 would be and out of window ACK, causing

a RST.

25

Random Pauses

As described in Section 2.2.2, the main difficulty in the implementation was to keep

the attacker’s sequence numbers synchronized with what the server was sending. Thus,

one way of thwarting the attacker would be for the server to randomly pause. A client

correctly implementing the protocol will reciprocate by pausing with the server and

waiting for more data. On the other hand, an attacker will continuously send ACKs

for packets not yet sent, exposing the attack. This solution does not prevent against

the lazy variant of the opt-ack attack. Also, if the server applied this pausing test too

often, performance could suffer significantly. Our final proposed solution expands on

the random pausing idea with additional robustness and minimal performance penalty.

2.4.2 Proposed Solution: Randomly Skipped Segments

The main problem with the random pause solution is the efficiency penalty to non-

malicious clients. Instead of pausing, we propose the server skip sending the current

segment, and instead send the rest of the current window. Note that this is equivalent to

locally, intentionally dropping the packet. A client that actually gets all of the packets,

save the skipped one, will start re-ACKing for the lost packet, thereby invoking the fast

retransmit algorithm. However, an attacker, because it does not have a global view of

the network, cannot tell where along the path a given packet was dropped, so it cannot

tell the difference between an intentionally dropped packet and a packet dropped in

the network by congestion. Thus, an attacker will ACK the skipped packet, alerting

the server to the attack. Note that usually fast retransmission indicates network con-

gestion, so the congestion window is correspondingly halved. However in this case,

retransmission was not invoked due to congestion in the network, so the sender should

not halve the congestion window/slow start threshold as it typically would. Given that

26

most modern TCP stacks implement selective acknowledgments (SACK)[98], this so-

lution is significantly more efficient than randomly pausing (see Section 2.5 for per-

formance). The only penalty applied to a conforming client is a single round trip time

in delay.

To determine how often to apply the skipped packet test, we maintain a counter

of ACKs received. Once a threshold number of ACKs are received, the skip test is

applied. It is important that the threshold be randomized, as the security of this system

requires that the attack not predict which segment was be skipped. However, there is

an obvious trade off in where to make the skipped packet threshold. If it is too low,

the server will lose efficiency from skipping packets too often. Setting the threshold

too high allows the attacker to do more damage before being caught (see Section 2.5

for an exploration of this trade-off). Our solution is to chose the threshold uniformly

at random over a configurable range of values.

This simple skipped segment solution meets all of our goals. It is efficient: compli-

ant clients suffer only one round trip time in delay, the computational costs consist of

keeping only an extra counter, and the storage costs are trivial (5 bytes per connection,

described below). The skipped packet solution is robust against the variations of the

attack described in Section 2.2.3, because it inherently checks whether a client actually

received the packets. This solution is a local computation, so it needs no additional co-

ordination or infrastructure, i.e., the deployment requirements are met. Best of all, it

is transparent to unmodified clients, allowing for incremental deployment.

2.4.3 Skipped Packet Implementation

We implemented the skipped packet solution for the Linux 2.4.24 kernel. The total

patch is under 200 lines (including comments, prototypes, and headers), and was de-

27

veloped and tested in under one week’s time by someone previously unfamiliar with

the Linux kernel. We add two entries to the per connection state (struct tcp opt):

opt ack mode (1 byte) and opt ack data (4 bytes). Further, we add 3 global configu-

ration variables: sysctl tcp opt ack enabled , sysctl tcp opt ack min, and sysctl tcp opt ack max .

When a new connection is created, opt ack mode is initialized to OPT ACK MODE COUNTDOWN ,

and opt ack data is set to a number uniformly at random between sysctl tcp opt ack min

and sysctl tcp opt ack max , inclusive. With each successful ACK, opt ack data is

decremented, until it reaches zero. Upon opt ack data reaching zero, we set opt ack mode

to OPT ACK MODE SKIP , update the send head pointer to the next block (skipping

the segment), and save the sequence number of the segment skipped into opt ack data.

A compliant client will ACK the beginning of the hole (i.e. the sequence in opt ack data),

where a malicious attacker will ACK a segment past the hole. If the client ACKs a

segment before the hole, we leave the test in place until another ACK arrives. If the

client ACKs past the hole, it fails the test: we reset the connection and log a mes-

sage to the console. In implementation, we use parameters sysctl tcp opt ack min =

100 and sysctl tcp opt ack max = 200, as suggested by our evaluations in Section

2.5.3. Last, under Linux, the retransmission code automatically handles resending the

skipped segment for clients that correctly ACK the beginning of the hole.

The description of the fix is complete, except for a few additional details. If a

timeout occurs in the middle of the skip test, we need to reset the threshold countdown,

and go back to mode OPT ACK MODE COUNTDOWN . The reasoning is this: if

the segment before the hole is lost, and there are no segments after the hole (or they

are all lost), then the client will not ACK the beginning of the hole, until after the

retransmit. However when a timeout occurs, the retransmit code might resend the

skipped segment, negating the test. Resetting the threshold counter and changing the

28

mode in this obscure case solves this problem.

Also, to insure that the randomly skipped segments solution does not introduce a

new DoS attack, we must ignore out of window ACKs during the skipped segments

test. Otherwise, it might be possible for a malicious node to convince a server that a

benevolent client was performing an opt-ack attack.

2.5 Attack Evaluation

We evaluate the feasibility and effectiveness of the opt-ack attack in a series of simu-

lated, local area, and wide area network experiments. In the first set of simulations, we

determine the total amount of traffic induced by the opt-ack attacks. Next, we deter-

mine the effect of the attack on other (honest) clients trying to access the victim. We

also present results for the amount of traffic (described in Section 2.3) our real world

implementation actually achieves across a variety of platforms and across different

file sizes. Finally, in Section 2.5.3, we evaluate the efficiency of our skipped segment

solution.

2.5.1 Simulation Results

We have implemented the opt-ack attack in the popular packet level simulator ns2

and simulate the amount of traffic induced in various attack configurations. In each

experiment, there is a single attacker and multiple victims connected in a star topology.

Each victim has a link capacity of 100Mb/s, and all links have 10ms latency (the

choice of delay is arbitrary because it does not affect the attack). We vary the number

of victims, and the mss and wscale of the connection. The attacker makes a TCP

connection to each victim in turn, and only sends acknowledgments once all victims

29

 1e+07

 1e+08

 1e+09

 1e+10

 0 10 20 30 40 50 60 70 80 90 100

B
yt

es
/s

 (
lo

g
sc

al
e)

Seconds

1 Victim

2 Victims

4 Victims

8 Victims

16 Victims

32 Victims

64 Victims

128 Victims
256 Victims

512 Victims

Figure 2.2: Maximum Traffic Induced Over Time; Attacker on T1 with

mss=1460,wscale=4

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 1 10 100 1000 10000

B
yt

es
/s

ec
on

d

Number of Victims

mss=1460,wscale=4

mss=88,wscale=0
mss=1460
wscale=0

Figure 2.3: Maximum Traffic Induced By Number of Victims; Attacker on T1

have been contacted. Victims are running the “Application/FTP” agent, which uses an

infinite stream of data.

In Figure 2.2, we show the sum of the attack traffic generated over time with vari-

able numbers of victims. In this experiment, the attacker is on a T1 (1.544Mbs) and

uses connection parameters mss=1460 and wscale=4 (maxwindow=1048576). When

the number of victims is less than 512, the amount of flooding is limited by the sum

of the bandwidths of the victims, as predicted by Equation 2.4 in Section 2.3. The

30

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 1 10 100 1000 10000

P
ac

ke
ts

/s
ec

on
d

Number of Victims

mss=1460,wscale=0

mss=1460,
wscale=4

mss=88,wscale=0

Figure 2.4: Maximum Packets Induced By Number of Victims; Attacker on T1

amount of traffic doubles as the number of victims double until 512 victims. The num-

ber of victim’s increases, the attack takes longer to achieve full effect as predicted by

Equation 2.5. The case with 512 victims took 73 seconds to reach it peak attack rate,

while all others did so in under 30 seconds. At 512 victims, the simulation achieves

99.9% of the traffic predicted by Equation 2.2.

As shown in Figure 2.2, once the attack’s maximum effect is reached, it can be sus-

tained indefinitely. In Figure 2.3 and Figure 2.4, we show the maximum traffic induced

as we vary the number of victims, mss and wscale for bytes/second and packets/second

respectively. As predicted by Section 2.3, attackers with a lower mss produce more

traffic than one with a higher value. Likewise, an increased wscale has a dramatic

increase in the total traffic generated.

Due to CPU and disk space limits, we were not able to simulate more than 512

victims for all parameters, or wscale values above 4, despite the fact that our simulation

machine was a dual processor 2.4Ghz Athlon-64 with 16GB ram and 300GB in disk.

31

2.5.2 Real World Implementation

In order to validate the attack, we implemented it C and experimented on real machines

in a number of network settings. We measure the effect of the attack on a single vic-

tim and the actual bandwidth generated from a single victim running various popular

operating systems.

It should be noted that we did not experiment with multiple attackers or multiple

victims due to real world limitations of our test bed. Our experiments with a single

attacker and single victim were sufficient to cause overwhelming traffic on our local

networks. It would be irresponsible and potentially illegal to have tested the distributed

attack on a wide-area test bed (e.g., PlanetLab[114]), and even our simple one attacker-

one victim wide-area experiments caused network operators to block our experiments.4

Single Victim DoS Effect - Lan and Wan

Experiment Average (sec) Dev. Increase

No Attack 89.11 0.007 1

LAN Attack 1552.03 141.76 17.42

WAN Attack 779.93 139.32 8.75

Table 2.3: Average Times with Deviations for a Non-malicious Client to Download a

100MB File

This experiment measured the effect on a third party client’s efficiency in down-

loading a 100MB file from a single victim during various attack conditions. We re-

4Incoming traffic to one author’s home DSL IP address was temporarily blocked as a result of these

experiments. This did not serve to stop the attack, as the outbound ACKs could still be sent. However,

this served as evidence that we should cease the experiment.

32

Internet

Server
100Mb/s

10Mb/s

128Kb/s

Client

10Mb/sSwitch

Amplified
Data Stream

WAN
Attacker

LAN
Attacker

Figure 2.5: Topology for Experiments

peated this experiment with no attacker, with an attacker on the local area network,

and with an attacker across the Internet (see Figure 2.5). The local area attacker was a

dual processor Pentium III running Linux with a 10Mb Ethernet card, while the WAN

attacker was a 100Mhz Pentium running GNU/Linux on an asymmetric 608/128 Kb/s

downstream/upstream residential DSL line. The latency on the WAN link varied over

time, with a average RTT of 13.5ms.

A typical web server runs on a fast local area network, which connects to a slower

wide area network. In order to emulate this bottleneck, and also to safeguard against

saturation of our production Internet connection, we connected our test web server to

the world via a 10Mb connection on a Cisco Catalyst 3550 switch. Furthermore, both

LAN and WAN attackers were configured to use TargetBandwidth of 109 bytes/second,

and β = 16000 bytes/s as their local bandwidth setting (see Section 2.8 for descrip-

tion). The intuition is that the LAN and WAN attackers should be equally capable with

respect to their available bandwidth, but the WAN attacker must compensate for more

end-to-end jitter and delay. Each run used mss=536 and wscale=0, i.e., typical values

for Internet connections. Each experiment was repeated 10 times and the values aver-

aged. The numbers were measured with a command line web client (similar to wget)

33

specially instrumented to measure bandwidth at 10 ms intervals. We present the results

from these experiments in Table 2.3. The “Increase” column refers to the increase in

time relative to the “No Attack” baseline.

The effect of the attack is significant. The 100MB file takes on average 17.42 and

8.75 times longer to download under LAN and WAN attack, respectively. We believe

that the time difference between the WAN and LAN attacks is due to the increased

jitter of the wide area Internet, and the increased standard deviation in the results sup-

ports this. This variability makes keeping synchronizing with the victim more difficult

due to the buffered ACK problem, as described in Section 2.8. However, more ad-

vanced attackers could target more victims (Section 2.2.2) or potentially employ more

sophisticated segment prediction to increase the effectiveness of the attack.

We also re-ran the same set of experiments with a set of hubs in place of the switch,

effectively removing queuing from the system. The times to download the 100MB file

while under attack were reduced to 5 times and 4.5 times the baseline for LAN and

WAN attackers, respectively. In other words, having queuing on the bottleneck link

significantly increased the damage from the attack. We surmise this is because the

opt-ack attacker used mss = 536 and the non-malicious client, since it was on local

Ethernet, used mss = 1448. Once the queue was full, the switch could service two

of the attack packets before there was room for a legitimate (i.e. destined to the non-

malicious client) packet. Effectively, the higher rate of smaller packets caused the

switch to drop more non-malicious/legitimate packets. Removing the queue from the

system reduced the amount of dropped legitimate packets, therefore increasing non-

malicious throughput.

34

Amplification Factors

To evaluate the potential effectiveness of the distributed opt-ack attack, we measure the

amount of traffic that our implementation code can induce in a single victim. In this

experiment, we use the LAN attacker, as above, to attack various operating systems

including GNU/Linux 2.4.24, Solaris 5.8, Mac OS X 10.2.8, and Windows XP with

service pack 1. For this experiment, instead of a web server, each victim ran a program

that streamed data from memory. This was done to remove any potential application-

level bottlenecks from the experiment. As above, the attacker used parameters β =

16000, mss = 536, and wscale = 0. We measured the bandwidth in one second

intervals using a custom tool written with the libpcap library. Each experiment in

Table 2.4 was run 10 times, averaged, and is shown as an amplification factor of the

attacker’s used local bandwidth.

We believe that the variation in amount of flooding by OS is due to the lack of

sophistication of our attack implementation. The amplification factor for Linux is

251.6 times the used bandwidth, which translates to 251.6/1336 or approximately 18%

of the theoretical maximum traffic, Tmax. This low number is in part because the

implementation sends four ACKs per window (as described in Section 2.8), which

alone limits the attack to 25% of Tmax.

Smaller Files

In the first set of experiments, we assumed the victim served a 100MB file for the

attacker to download. While there are files of this size and larger on the web (Windows

XP service pack 2 is 272MB and heavily replicated), we repeated the experiment with

smaller file sizes. The test bed is exactly as above (Figure 2.5) with the LAN attacker

and queuing. Again, the non-malicious client downloaded a 100MB file from the

35

OS Avg. KB/s Dev. Amplification

Linux 2.4.24 3931.93 1102.38 251.6

Mac OSX 806.2 258.1 51.6

Solaris 5.8 3150.6 1301.1 201.6

Windows XP 640.62 378.85 41.0

Table 2.4: Average bytes/s of Induced Flooding, Standard Deviation, and Amplifica-

tion Factor of Attacker’s Bandwidth

File Size Time(s) Dev. Factor Increase

No Attack 89.11 0.007 1

100MB File 1552.03 141.76 17.42

10 MB File 281.00 9.81 3.15

1 MB File 152.87 21.48 1.75

512 KB File 106.63 9.03 1.20

Table 2.5: Average Times for Client to Download a 100MB File, With Attacker Down-

loading Various-Sized Files

victim. In this experiment, we vary the size of the file the attacker downloads. The

results are presented in Table 2.5. As expected, smaller files are less useful for the

attacker. However, even 10MB files cause the client to slow down by a factor of 3.15,

so smaller files can still cause some damage.

Clearly, these results depend upon the attack implementation described in Section

2.8, and there are inefficiencies in our implementation that can be improved upon. For

example, the implementation code creates a new TCP stream each time a download is

complete, and starts again in a loop. An easy optimization would have been to take

36

advantage of HTTP’s persistent connections and download multiple files on the same

stream. However, the results presented here are sufficiently motivating. As above, each

data point represents the average of 10 experiments. The “Factor Increase” column

refers to the increase relative to the “No Attack” baseline in Figure 2.3.

2.5.3 Performance of Skipped Segments Solution

In the final experiment, we evaluate the efficiency of our proposed randomly skipped

segments solution. Specifically, we measure the time for a non-malicious client on the

LAN to download a 100MB file from the server with and without the fix, with and with-

out selective acknowlegement (SACK) enabled on the client, and with various thresh-

old values for the fix. The download times were measured with the UNIX time utility.

Each experiment was run ten times, the results were averaged, and they are presented in

Tables 2.6 and 2.7, with and without SACK respectively. The two numbers in the first

column of each table refer to the threshold values used for sysctl tcp opt ack min

and sysctl tcp opt ack max in each experiment.

The results show that the performance hit from the proposed fix is negligible for

most parameters. Even when we chose the threshold to be intentionally inefficient,

i.e., skipping a segment every 10 to 20 ACKs, the fix maintained 99.457% efficency.

We found that varying sysctl tcp opt ack min value had little effect when combined

with SACK, but made a 1% difference without SACK. We believe the loss from skip-

ping segments every 100-200 ACKs, i.e., less than 0.1% with or with SACK, is an

acceptable price for defeating this attack.

37

Experiment Time(s) Deviation %

Unfixed 89.136 0.007 100%

Fixed: 10-20 89.623 0.980 99.457%

Fixed: 1-200 89.158 0.0234 99.975 %

Fixed: 100-200 89.167 0.0256 99.965 %

Table 2.6: Time to Download a 100MB File for Various Fix Options - SACK Enabled

Experiment Time(s) Deviation %

Unfixed 89.143 0.0152 100%

Fixed: 1-200 90.048 0.3960 98.994%

Fixed: 100-200 89.145 0.0111 99.998%

Table 2.7: Time to Download 100MB File for Various Fix Options - SACK Disabled

2.6 Related Work

There is a long history of denial of service attacks against TCP, which we divide

broadly into brute force attacks and more efficient attacks.

2.6.1 Brute Force DoS Attacks

The salient feature of brute force attacks is the fact that it is incumbent upon the at-

tackers to provide the resource that ultimately overloads the victim. Example attacks

include bandwidth flooding, connection flooding, and Syn flooding. The commonality

among these attacks is that the attackers must be capable of draining more of a pre-

cious resource, be it bandwidth, file descriptors, or memory, than the victim’s capacity.

One possible defense against these attacks is to obtain more of the resource, i.e. buy

38

more memory or lease more bandwidth.

The danger of the opt-ack attack is that the victim’s own resources are being turned

against them. If the victim adds more bandwidth capacity, then the attacker can then

use the additional bandwidth to generate more traffic. While there is a bound, Tmax, to

the traffic the attacker can induce (see Section 2.3), the victim is not necessarily safe

if it secures more than Tmax in capacity. Increasing the victim’s local capacity pushes

the bottleneck link further into the network, injecting more traffic into the Internet

backbone.

2.6.2 Efficient Attacks

We refer to efficient attacks as those that require little resources from the attacker but

result in victims introducing large amounts of resources to the network, essentially

performing their attack for them.

Smurf Attack

A smurf attack [135] consists of forging a ping packet from the victim to the broadcast

address of a large network. In this way, a single packet is amplified by the size of the

network, and redirected at the victim. A variant of this attack is to forge the ping from

the broadcast address of the victim, forcing the victim’s switches to do more work in

duplicating the packet.

The amplification aspects of this attack are similar to the opt-ack attack. However,

the attack signature of smurf makes it easy to detect and defend against: simply block

traffic from a broadcast address or rate limit ICMP ECHO traffic at the border router.

In contrast, opt-ack is not known to have an obvious attack signature, and most site

policies would not allow blocking TCP traffic.

39

Shrew Attack

The attack most similar to opt-ack is the Shrew [81] attack, in that it also attempts

to exploit of TCP congestion control. In Shrew, an attacker sends traffic directly to

the receiver/victim in short bursts, trying to force a retransmission due to packet loss.

If the bursts are timed correctly, the sender’s RTO period can be abused such that

each retransmission coincides with another burst, and thus a DoS condition is created.

Analysis shows that a simple square wave pattern of bursts forces the sender’s RTO

period to synchronize with the bursts. Further, the bursts can be sufficiently infrequent

such that the average rate would not alert a potential intrusion detection system.

Despite these similarities, the two attacks are quite different. In Shrew, it is the re-

ceiver who is attacked directly, where with opt-ack, it is the sender who is attacked

which indirectly impacts all receivers. Also, Shrew assumes that the attacker has

enough bandwidth to directly force packet loss. This is reasonable when the path

from the attacker to the receiver includes the bottleneck link from sender to receiver,

but this not always the case. In contrast, opt-ack makes no such assumptions. With

opt-ack, it is the sender’s first-hop link that is saturated, which thereby becomes the

bottleneck for all connections (assuming a single homed sender). Further, even a rel-

atively weak opt-ack adversary, such as an attacker on a modem, presents a serious

threat to a comparatively high bandwidth server.

Also, it seems that the main advantage of the Shrew attack is that the average

attack traffic rate is low. However, if the attack became popular, it seems intuitive that

intrusion detection systems could easily adapt by examining the maximum traffic rate

in addition to the average traffic.

Lastly, as we note in Section 2.5, elements of the two attacks can be combined. An

intelligent opt-ack attacker can vary the rate of ACKs sent to cause the return stream

40

to regularly burst like the Shrew attack. Using this method, it is apparent that more

damage can be generated.

Misbehaving Receivers

As previously mentioned, Savage et al.[127] discovered the opt-ack attack as a method

for misbehaving receivers to get better end-to-end performance. While they suggest

that opt-ack can be used for denial of service, they did not investigate the magnitude of

the amplification the attack can achieve. As a result, their cumulative nonce solution to

the opt-ack attack does not consider global deployment as a goal. In this work, through

analysis and implementation, we have shown that opt-ack is a serious threat. Further,

we have engineered an efficient solution that does not require client-side modification,

and thus is more readily deployable.

Reflector Attacks

In [112], Paxson discusses a number of attacks where the initiator can obscure its iden-

tity by “reflecting” the attack off non-malicious third parties. As a general solution,

Paxson suggests upstream filtering based on the attack signature with the assumption

that it is not possible to overwhelm the upstream filter with useless data. The work

specifically mentions that if the attacker is able to guess the ISN of the third party, it

is possible to mount a blind opt-ack attack against an arbitrary victim. No analysis is

made of the amount of the amplification from the opt-ack attack, nor is it immediately

clear what filter rules could be applied to arbitrary TCP data.

41

2.7 Discussion and Conclusion

We have described an analysis of the opt-ack attack on TCP and demonstrated that

amplification from the attack makes it dangerous. We have also engineered an effi-

cient skipped segments defense against attacks of this type that allows for incremental

deployment. The opt-ack attack succeeds because it violates an underlying assumption

made by the designers of TCP: that peers on the network will provide correct feedback.

This assumption holds when clients are interested in receiving data, since false feed-

back will usually lead to worse end-to-end performance. However, the opt-ack attack

shows that if malicious nodes do not care about data transfer integrity, they can cause

widespread damage to other clients and to the stability of the network.

Since opt-ack violates an underlying assumption upon which TCP is based, we be-

lieve a proper solution for the opt-ack attack involves changing the TCP specification.

Although new features can be added to TCP (e.g., cumulative nonces) to ensure the

receiver TCP is in fact receiving all of the segments, this type of solution is difficult to

deploy because it requires client modification. The skipped segment solution presented

here requires modification of only high capacity servers, and is thus more readily de-

ployable. In this chapter, we have described different mechanisms that can be used to

defend against opt-ack attacks. We recommend a specific change to the TCP specifi-

cation that we have shown to be easy to implement, efficient for fast connections, and

which does not burden resource-poor hosts.

2.8 Implementing Opt-Ack

In this section, we describe an actual implementation of opt-ack against TCP. There

are three reasons we chose to implement the attack in addition to simulating it. First, it

42

was clear that the opt-ack attack worked in theory, but we wanted to demonstrate that

it was feasible in practice. Second, the implementation would allow us to test against

deployed networks and gauge the effectiveness of the attack against real-world sys-

tems. Third, and most importantly, we hoped that in implementing the real attack, we

would gather sufficient insight to design a viable solution. In the rest of the section, we

describe our experience with implementing opt-ack, and highlight specific challenges

present in real-world systems that we had to account for.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0 5 10 15 20

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Attacker and Victim Sequence Space Over Time

Slow

Artifact 1

Artifact 2

Attacker Overrun

Start

In Sync

Victim’s Segments
Attacker’s Acks

Figure 2.6: Attacker and Victim Sequence

Space, Measured at Victim

 0

 50000

 100000

 150000

 200000

 250000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Attacker and Victim Slow Start

Congestion Control
Start

Transition Phase

Victim’s Segments
Attacker’s Acks

Figure 2.7: Detail: Attacker and Victim Slow

Start

 5.5e+06

 5.55e+06

 5.6e+06

 5.65e+06

 5.7e+06

 5.75e+06

 5.8e+06

 5.85e+06

 6 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.1

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Attacker and Victim Sequence Space Over Time

Victim’s Segments
Attacker’s Acks

Figure 2.8: Detail: Attacker and Victim Synchronized

43

 2.57e+07

 2.58e+07

 2.59e+07

 2.6e+07

 2.61e+07

 2.62e+07

 2.63e+07

 2.64e+07

 2.65e+07

 11.96 11.98 12 12.02 12.04 12.06 12.08 12.1

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Buffered ACK Problem

Victim’s Segments
Attacker’s Acks

Figure 2.9: Artifact 1: Buffered ACKs

2.8.1 Recovery from Overruns

Compliant TCP streams are supposed to generate an empty segment upon receipt of

an out of window ACK (Section 2.2.2). The attacker could use this empty segment

to detect overruns, but the durring the attack incoming link is typically saturated, so

the empty segment will be dropped. Additionally, Linux ignores an out of window

ACK, times out on previous unACK’ed packets, and retransmits them. Other OSes,

specifically MacOS X 10.2 and Windows 2000, correctly generate the empty packet.

However, while a stream is making progress, the sequence numbers of packets re-

ceived increase monotonically (barring packet reordering). Upon a retransmission, or

when an empty packet is received, the sequence number is less than or equal to the

previous packet, breaking monotonicity. So, by monitoring the sequence numbers of

packets actually received, the attacker can detect overruns when the sequence numbers

44

 2.91e+07

 2.92e+07

 2.93e+07

 2.94e+07

 2.95e+07

 2.96e+07

 2.97e+07

 14.4 14.44 14.48 14.52 14.56 14.6

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Attacker and Victim Sequence Numbers Over Time

Victim’s Segments
Attacker’s Acks

Figure 2.10: Artifact 2: Victim Delay and Buffered ACKs

no longer increase. When an overrun is detected, the attacker can resume slow start on

the last received packet. This is an expensive process, as it potentially requires waiting

on the order of at least one second [11] for the server to timeout.

Figure 2.6 shows the life cycle of an attack against a GNU/Linux 2.4.20 victim,

across a wide area network, as measured at the victim. The “attacker” data points

show the ACKs at the time the victim received them, and the “victim” data points

show the segments being sent by the victim. Note that for the majority of the time the

two lines are indistinguishable, i.e. the attacker is synchronized with the victim (Figure

2.8). However, on three occasions the attacker overruns the victim’s sequence number,

and is forced to recover, as described above. The attacker blindly continues sending

ACKs that are ignored, as the victim stops making progress in sending the stream (as

demonstrated by the flat line). In the first overrun, the victim actually retransmits three

45

times before the attacker recovered, because the retransmitted packets were also lost.

However, in the next two overruns, the attacker recovered faster, each on the order of

one second.

Recovery code must track the victim’s slowstart threshold (ssthresh) in addition to

the estimated congestion window (ecwnd). The variable ssthresh is initialized to the

maximum window size, is set to half ecwnd with every recovery, and grows with the

congestion window, as prescribed by [145].

2.8.2 Victim’s Processing Time

One of the most difficult challenges in keeping the attacker synchronized is estimating

the time taken for the victim to send the packets, which we call the processing time.

Obviously, an attacker should not ACK segments faster than a victim is capable of

generating them. Through experimentation, we find that an upper bound on the pro-

cessing time of a victim if 50ms (Section 2.5). However, this is a lose bound and in

this section, we present techniques for more exactly determining it.

If the attacker knows the victim’s processor speed, server load, operating system,

and local bandwidth, it may be able to estimate the processing delay time. However,

this information is difficult to determine, and underestimating the delay time leads to

the attacker getting ahead of the server as well as significant performance degrada-

tion. To address this challenge, we introduce the TargetBandwidth variable. With this

variable, we can derive the processing delay:

processing delay =
bcwnd/mssc × (54 + mss)

TargetBandwidth

The TargetBandwidth variable represents the rate of traffic the attacker is trying to

induce the server to generate (in bytes/second). While the value of TargetBandwidth

46

can be determined adaptively based on how often the attacker is forced to recover, for

the purposes of the implementation code, we specify it as a runtime parameter.

The processing time of an idle server is significantly shorter than that of a busy

server. This implies that an attacker needs to estimate a server’s load before attacking

it. However, we noted that as the attacker’s flow rate increases, the other connections

are forced to back off, which in turn decreases the processing time of the server. Thus,

we introduce the concept of adaptive delay. By overestimating the initial processing

time and the delay between ACKs, i.e. sending ACKs slowly, and then progressively

ramping up the ACK speed to the desired rate, third party streams are “pushed” out of

the way with minimal overruns. How to do this effectively in an aggressive manner,

without causing the attacker to overrun and restart, is an open question. However, in

the implementation, we start arbitrarily at 10 times the estimated processing time, and

then decrease down to the target processing time in steps of 500 µs per window.

Another variable affecting the processing time is the coarse grained time slice in

the victim’s scheduler. Periodically, the victim process is suspended for a number of

time slices, which can cause a delay in sending if the kernel buffer is drained before

the process can be rescheduled. An example of this is the second artifact (Figure 2.6,

blown up as Figure 2.10), where the server actually pauses for 36 ms. Note, it is less

obvious from Figure 2.10, but the server starts sending less than one millisecond before

the buffered ACKs arrive. We do not have a technique to predict these delays, and rely

on the recovery/restart mechanism.

2.8.3 Multiple ACKs Per Window and the Transition Phase

We noted that during congestion avoidance, the server rarely sent a full 64KB window,

even when the congestion window would otherwise have allowed for it. The effect was

47

that the number of segments in flight varied, and it became difficult for the attacker to

ACK the correct number of segments. We speculate this is due to operating system

buffering inefficiencies, and perhaps coarse grained time slices. Whatever the reason,

we changed the attack algorithm to ACK half of the window at a time with the appro-

priate delay instead of the full window all at once. By ACKing half as much, twice

as often, we were able to keep the amount of flooding high, reducing the chance the

attacker gets ahead of the victim’s sequence number. The downside is that by sending

twice as many ACKs, we get only half of the performance listed in Section 2.3.

An additional benefit of sending two ACKs per window is resistance to lost ACKs.

The basic algorithm assumes that each ACK successfully reaches the victim, which is

obviously not true in general. To maximize this benefit in implementation, we send

two ACKs slightly offset from each other twice per window for a total of four ACKs

per window. The benefit here is two fold. First, the attacker can now lose three se-

quential ACKs in a row without overrunning the server. Second, with more ACKs the

congestion window grows faster after recovery from overrun. The effect of sending

four ACKs per window is we reduce the expected amplification by a factor of four.

It was difficult to track the exact state of the victim’s congestion window and

ssthresh, especially after recovering. It was common for the attacker to stay correctly

synchronized with the victim through slow start and then get out of sync immediately

when moving to the congestion avoidance algorithm. While we speculate there are

many factors that cause this behavior, i.e. unpredictable server load, and the timing

involved in the congestion avoidance phase may need to be more accurate than the

slow start phase, it simply became easier to work around it. Thus, we introduce a

“transition” phase for the attacker between slow start and congestion avoidance (see

Figure 2.7). In this transition phase, we ACK every expected packet in turn for the full

48

window. The effect of the transition phase is that it allows for a larger margin of error

in estimating the victim’s ssthresh variable. In practice, we ACK two full windows in

the transition phase before transitioning to the full congestion avoidance portion of the

attack.

2.8.4 The Attacker’s Local Bandwidth

Algorithm 1 does not take into account the attacker’s local bandwidth. Given a lo-

cal bandwidth of β in bytes per second, ACKs can be sent at at most α = β/54

bytes/second. At speeds faster than α, and the ACKs get buffered or even dropped,

which interferes with the timing of the attack. When ACKs are buffered (as shown

in the first artifact of Figure 2.6, and Figure 2.9))they arrive at the victim all at once.

The victim is not able to send fast enough to keep up with the sudden flood of ACKs

and this creates an overrun. To fix this, we limit the rate of outgoing ACKs from the

attacker as a function of the available local bandwidth, which is specified at runtime.

The main effect of rate limiting the ACKs is to maintain even spacing when they arrive

at the victim, despite network jitter and buffering.

49

Algorithm 1 –Attack({v1 . . . vn}, mss ,

wscale)
1: maxwindow← 65535× 2wscale

2: n← |{v1, . . . , vn}|

3: for i← 1 . . . n do

4: connect(mss ,wscale) to vi , get isni

5: acki ← isni + 1

6: wi ← mss

7: end for

8: for i← 1 . . . n do

9: send vi data request { http get, ftp

fetch, etc. . .}

10: end for

11: while true do

12: for i← 1 . . . n do

13: acki ← acki + wi

14: send ACK for acki to vi { entire

window}

15: if wi < maxwindow then

16: wi ← wi + mss

17: end if

18: end for

19: end while

50

Chapter 3

Shared Resources with Cooperative Users: Slurpie

3.1 Introduction

Consider a situation where many Internet hosts all try to simultaneously download a

large file from a central server, e.g. when a new CD image or critical patch is re-

leased for a popular operating system. As the number of clients increases beyond a

critical threshold, the data rate each client receives from the server tends towards zero.

When the server is so stressed, the processing and storage resources the server needs

to handle client connection state is exhausted, and new clients are denied access to the

server. Unfortunately, existing clients do not get adequate service either, since their

data connections (using TCP) compete with each other and with new connection re-

quests. Under severe contention on the server access link, the network regresses to

congestion collapse and no client is able to make progress. Thus, it is not uncommon

for extremely popular downloads to take many (tens of) hours or longer, when un-

contested, the file could be downloaded in minutes. It is also not uncommon for the

downloads to fail entirely, because the TCP connections either do not get created or

time out due to packet losses.

51

C C C C C C C. . .

Figure 3.1: Traditional

data transfer: all data

is transferred from the

server.

C

C

C

C

C

C

C

C

C

Figure 3.2: Slurpie:

Clients form a mesh

and most data can

be gotten from mesh

neighbors.

In this chapter, we present a protocol, named Slurpie1, to handle this precise prob-

lem. Specifically, the goal of Slurpie is to minimize client-side wall clock time taken

to download large, popular files. Our work on Slurpie is motivated by the follow-

ing observation: while the resources, both bandwidth and processing, at the server

are completely exhausted, the clients themselves usually have ample spare capacity.

Using spare processing and bandwidth on inter-peer paths, Slurpie creates a dynamic

peer-to-peer network (Figure 3.2) of clients who want the same file with the goal of

reducing client download time and server load. Our design goals for Slurpie were the

following:

1. Scalable: Slurpie should be scalable and robust: specifically, the protocol should

be able to handle very large (103–106) simultaneous clients. Further, an explicit

goal of our protocol is to maintain load at the server independent of the number

of Slurpie clients. Thus, the entire Slurpie client set should appear as a con-

figurable number of clients at the server, regardless of the size of the Slurpie

1Slurpie was originally designed as part of the CS 711 graduate networking course at the Univ. of

Maryland.

52

network.

2. Beneficial: Clearly, the first property implies that a properly designed Slurpie

protocol will reduce load at the server. However, clients will not use Slurpie

unless their own download time is reduced. The second explicit design goal of

Slurpie is to minimize the client download times; as we shall see, almost all

clients decrease their download times by using Slurpie rather than getting the

file directly from the server.

3. Deployable: A design goal of Slurpie is the ability to be deployed without in-

frastructure support. Specifically, we do not require deployment or router co-

location of any new dedicated servers and it is reasonably easy for any ad-hoc

groups of nodes to start their own instantiation of Slurpie. As described in the

protocol description, Slurpie requires a demultiplexing host which it uses to lo-

cate other peers; we have designed the protocol such that the load —in terms of

processing bandwidth, and state— on this host is minimal.

4. Adaptive: Slurpie is designed to adapt to different network conditions, and tai-

lor its download strategy to the amount of available bandwidth and processing

capacity at the client.

5. Compatible: Lastly, we designed Slurpie such that it requires no server-side

changes. In fact, a server that is serving a set of Slurpie clients cannot determine

whether these clients are using Slurpie (except for the reduction in server load).

Thus, Slurpie can be used with existing data transfer protocols including HTTP

and FTP.

Inherent to our solution is the assumption that the server is the data transfer bottle-

neck, and that clients have additional resources (both processing and bandwidth) that

53

they are willing to use to decrease their download times. Additionally, we also make

the following assumptions:

• Slurpie will be used for bulk data transfer. Thus, latency and jitter are of sec-

ondary importance to overall throughput, and clients can receive and process

data out of order.

• Users are not required to persist in the system after they finish downloading their

file. Of course, system performance will increase if benevolent users choose to

persist, since they can then serve parts of the the file to new users.

• An end-to-end data integrity check is available out of band. The download pro-

tocols we consider, HTTP and FTP, do not provide a cryptographically strong

integrity check on transferred data. The concern due to the lack of a check is

amplified when parts of the file are received from unknown nodes in the net-

work. We assume that an application-level check is available out of band; note

that this is the current norm as most popular downloads are accompanied with a

MD5 checksum of the content.

3.1.1 Approach

Cooperative downloads, where the load on the server is mitigated by using other net-

work hosts, have previously been studied and implemented in many forms. These

prior efforts fall into three main categories: infrastructure-based solutions such as

content-distribution networks (e.g. Akamai [7]) where server providers provision in-

network hosts to alleviate load on the central server. The complementary approach is

client-deployed cache hierarchies (e.g. Squid [143]) that reduce client access times

(and in turn server load). There has been significant work in deploying and choos-

54

ing mirror servers that replicate content. All of these approaches require fixed in-

vestment in infrastructure support and work perfectly well as long as the demand

can be anticipated (and hence provisioned for). A new generation of p2p protocols

(NICE [17], Narada [36], CAN-multicast [118], Scribe [34], etc.) have been devel-

oped for application-layer multicast in which streaming content is replicated and for-

warded using the only resources of peers who themselves want this data. The inherent

advantage of these schemes is extreme scalability. This is because, these protocols

proportionately increase the amount of resources devoted to transferring data as the

number of clients who want the data increase. The research focus on application-

layer multicast has been on building efficient topologies that provide low end-to-end

latencies. Slurpie uses this same paradigm in which peers form a dynamic structure

without any extra investment in infrastructure. However, unlike prior work, our focus

is on creating an efficient structure for quickly locating and disseminating bulk data.

The Slurpie protocol is loosely based on the following schematic:

Suppose a popular file is available from a heavily loaded web server (called

the “source server” in the rest of this chapter). When a node wants to

download this file, it registers with a centrally known topology server and

retrieves a complete list of other nodes downloading the same file. The

file is logically divided into fixed sized blocks, and successful completion

of the download consists of downloading this set of blocks. The set of

nodes downloading the same file form a per file mesh. Update messages

of which nodes have which blocks are propagated through the mesh. With

the update knowledge, each node can either download a given block from

a peer, or from the source server.

55

The schematic described above is appealing, and has a number of desirable prop-

erties (e.g. reduction in server load). However, in practice, a number of problems have

to be solved in order to derive a usable solution. For example, the schematic requires

the topology server to maintain exact state about all peers downloading a file. Clearly,

this will not scale since flash crowds of many tens of thousands can often request the

same file within a very small period of time. There are many other practical problems,

such as deciding on a “good” number of blocks to divide the files into, and deciding

how many connections each peer should open. We also need to decide precisely how

the mesh is formed, how updates are propagated, and how a peer decides to approach

the server as opposed to downloading a block from the peer network. Finally, any co-

operative download protocol must have a good solution for the “last block” problem,

where all the nodes in the system have all but one block, and they all try to get the

last block from the server! This focus of this chapter is on solving precisely this set of

problems, and developing a protocol that meets our stated design goals.

3.1.2 Roadmap

The rest of this chapter is structured as follows: in the next section, we describe prior

work, and compare Slurpie to related work. In Section 3.3, we present specifics of the

Slurpie protocol. We present experimental results in Section 6.5, discuss deployment

issues in Section 3.5, and conclude in Section 4.7. This work was supported in part by

NSF CAREER Award ANI 0092806.

56

3.2 Related Work

The general problem of getting popular content off of heavily loaded servers is well

studied. We divide existing approaches down into categories of multicast, infrastructure-

based solutions, and existing peer-to-peer efforts. We also discuss the effects of erasure

encoding the data transfers.

3.2.1 Multicast

One method of reducing load at a server is to replace a number of unicast streams

with one single multicast stream. This can be done either at the IP layer [44], e.g.

using cyclic multicast [12], or in the application layer [17, 36, 118, 34]. The main

difference between these approaches and Slurpie is that Slurpie incorporates both a

discovery and a separate data transfer phase, i.e. in Slurpie the decision of where

to get the next piece of data is made dynamically depending on network conditions

and on which nodes have what data. In contrast, in all multicast-based schemes, the

data source is, by default the original server, and alternate paths are used primarily

for loss recovery [20, 53, 120]. Slurpie is also designed for bulk data transfer, and

downloads blocks in a random order, while a number of the multicast protocols are

optimized for streaming. Compared to Slurpie, most multicast protocols are much

more careful about creating a topology that approximates a shortest path tree (or some

some other good topological property). The Slurpie topology is essentially ad-hoc,

and data transfer links are added and kept only for transferring a few blocks. We

could potentially incorporate a more sophisticated topology construction algorithm

in Slurpie, but Slurpie peers stay in the network for a very short period of time and

our main objective in creating the topology is minimizing control overhead, and not

57

necessarily network-level efficiency. Many (if not most) multicast protocols will not

operate well if peers stayed in the network for only a few minutes, as is the norm in

Slurpie. Finally, Slurpie provides complete reliability, while for the most part, reliable

multicast is still has many difficult open research issues.

3.2.2 Infrastructure-based Solutions

Content distribution networks (CDNs) such as Akamai [7, 19] and web-caching hierar-

chies [143] are often used to alleviate load on popular servers. CDNs are deployed by

the content providers (i.e. the servers), and web-caches are usually deployed by clients.

A similar solution employed by some content providers is to employ a fixed number

of static content mirrors (e.g. See http://www.gnu.org/prep/ftp.html for

GNU software mirrors). Regardless of how these mirrors, caches, or CDN nodes are

deployed, they are explicitly provisioned for certain load levels, and if a flash crowd

exceeds this provisioned amount, then the performance of the system degrades again.

In contrast, resources available to Slurpie increase as the client set increases, and thus,

we believe Slurpie is able to handle larger client sets.

3.2.3 Peer-to-peer Bulk Transfer Protocols

Two peer-to-peer projects, CoopNet and BitTorrent, implement cooperative down-

loads.

CoopNet

In CoopNet [108], clients get redirect messages from the server to clients that have

previously downloaded the same file. Clients are expected to remain in the system

for some amount of time after they are finished downloading to serve files to future

58

http://www.gnu.org/prep/ftp.html

clients. The server provides multiple peers in the redirect, and an estimate of the best

client is calculated. The server stores the last n (n=5–50 in simulations) clients to have

requested the file, and the redirects are useful as long as one of the n clients is still

serving the file. All state is stored at the server, and it is assumed that both the client

and servers are CoopNet aware.

The intended application of CoopNet is downloading small HTML files, unlike

Slurpie which targets bulk data transfer. There is no notion of serving a partially

downloaded file, and all data transfers necessarily involve the server (in order to get

the redirect list).

BitTorrent

BitTorrent [29, 41] is the work closest to Slurpie, as it targets bulk data transfer and

has similar assumptions. A “tracker” service is set up to help peers downloading the

same file find each other. A random mesh is formed to propagate announcements,

and peers download from as many other peers as they can find. A novel feature of

BitTorrent is connection choking. Peer A will stop sending blocks to peer B (this is

called “choking” the connection) until peer B sends A a block, or a time out occurs.

The choking encourages cooperation, as well as implicitly rate limits the data going

out of a loaded peer. It is assumed that a BitTorrent client was started a priori on the

web server, and that the client stays in the system indefinitely serving the file. The web

server itself serves a file with a “.torrent” extension, which contains both a set of hashes

for the files contents, and a URL for the tracker. From the BitTorrent documentation, it

is not clear how much state the tracker keeps, but from examining the source, it appears

to be O(n), where n is the number of nodes downloading the file.

Compared to Slurpie, BitTorrent does not adapt to varying bandwidth conditions,

59

or scale its number of neighbors as the group size increases. Each client appears to

keep O(n) state, and they periodically reconnect to the tracker to provide update in-

formation. The tracker system limits the scalability of the system to the order of thou-

sands of nodes [41]. In Section 6.5, we present performance comparisons that show

that Slurpie out performs BitTorrent, with respect to both average download times and

also download time variance.

3.2.4 Erasure Encoding

Erasure codes have been used to efficiently transfer bulk data [30, 31]. With modest

overhead, they have the benefits of resilience to packet loss and eliminate the need for

stateful data transfers.

As pointed out in [30], the limitations of a stateful system, like Slurpie, typically

include: lack of data distribution, per connection state, and the “last block” problem.

Slurpie explicitly addresses each of these concerns via random block selection, fixed

state per node, and backing off from the webserver, respectively. Finally, it is possible

to incorporate erasure coding and similar encodings into Slurpie to potentially further

improve performance. This is an avenue of future work.

TS

C8

Get file1

C7 C6 C5 C4 C3

Figure 3.3: Get seed nodes from topology server; topology server keeps constant per

file state.

60

C8

C4

C7

C5

C3C6

add neighbor

add neighbor

add neighbor

add neighbor

add neighbor

Figure 3.4: Discover alive peers and form mesh; mesh degree depends on number of

peers.

C8

C4

C8: X
YZ C

3: Y
AB

C4: A
BC C

10: Y
DE

C5

C3C6

C7

Figure 3.5: Exchange updates with mesh peers; update rate controlled by bw adapata-

tion alg.

3.3 Slurpie: Protocol Details

The Slurpie protocol implements the basic schematic introduced in Section 3.1, but

includes a number of refinements that are necessary for proper functioning with large

client sets. At a high level, all nodes downloading the same file initially contact a

topology server (Figure 3.3). Using information returned by the topology server, the

nodes form a random mesh (Figure 3.4), and propagate progress updates to other nodes

(Figure 3.5). The updates contain information about which blocks are available where,

and this information is used to coordinate the actual data transfer (Figure 3.6). Slurpie

61

C8

C6

C4

C7

C5

C3

WS

H
TTP G

et

Get
 A

Bloc
k A

Data

Figure 3.6: Data Transfer. Server visited only if no peer has needed block.

uses an available bandwidth estimation technique, described below, that returns three

states: underutilized, throttle-back, and at-capacity. Using this information, the proto-

col makes informed decisions about the number of edges to keep in the mesh, the rate

at which to propagate updates, and the number of simultaneous data connections to

keep open. Slurpie coordinates group downloading decisions without global informa-

tion by employing a number of techniques, such as a random back off which controls

load at the source server. It is not feasible for Slurpie clients to keep per-peer state

for large download groups; we employ a mesh size estimation technique to determine

the mesh size using only data stored locally. In the rest of this section, we describe

different components of the Slurpie protocol, beginning with the mesh formation.

3.3.1 Mesh Formation and Update Propagation

The join procedure discussed in Section 3.1 did not scale because it assumed that

the topology server kept state for the entire set of nodes downloading the same file.

However, note that given a single seed node downloading the same file, a newly joined

node can receive updates from that seed, and use the update messages to discover

new peers and add new edges in the mesh. Thus, the topology server only needs to

maintain information about a single node that is currently downloading a file (instead

62

of all nodes that are downloading the file). But the question then becomes: which node

id. does the topology server store, and how does it guarantee that the node is still in

the system? In Slurpie, we always return the identity of the last node to query the

topology server (for that same file). The intuition is that the node that most recently

started downloading a file is the node that most likely to be still in the system. In

practice, the topology server maintains and returns the last ψ nodes, where ψ is a

small constant. Note that this procedure is identical to the mesh joining procedure in

Narada [36].

Given a set of seed nodes, the newly joined node makes bi-directional “neighbor”

links to a random subset of these nodes. Each node has a target number of neigh-

bors (η) that it seeks to maintain. The value of η is continually updated depending

on available bandwidth, and as new neighbors are discovered. The bandwidth esti-

mation algorithm is run once a second, and if it consistently returns underutilized, a

new neighbor, picked uniformly at random from the set of known peers, is added. In

general, each node tries to maintain η ≥ O(log n), where n is the estimated size of

the total number of nodes in the mesh. Since the mesh is, at a first approximation, a

random graph, the O(log n) degree implies that the mesh stays connected with high

probability [23].

Update Propagation

Along each neighbor link, update messages of the form 〈 IP-addr, port, block-list,

hopcount, node-degree 〉 are passed. These form the basic information units that alert

peers of new nodes joining the system, and of who has which blocks. The rate of

updates passed along each link per second, σ, is subject to an AIMD flow control

algorithm [72, 74] which additively increases and multiplicatively decreases update

63

rates depending on available bandwidth estimates. The intuition behind controlling

the update rate in this manner is the following: when a node does not have enough

peers to download from to fill its bandwidth capacity, it should increase its knowledge

of the world (and thus increase the rate at which it receives updates). Correspondingly,

as the node’s bandwidth becomes consumed with useful data downloads, information

about other peers becomes less useful.

The Update Tree In Slurpie updates, the block list is simply represented as a bit

vector. There are certainly a number of more sophisticated data structures, e.g. Bloom

filters [22] and approximate reconciliation trees [30] that we could use, but for our

purposes a simple bit vector has been sufficient.

0 ... 11 0 ...1 ...1 0 ...1

0 ... 111 ...11

... 11

0 0 0 1 0 0 0 0

1 0

11

Node 0 Node 1 Node 2 Node 3

logical OR
of child
vectors

Figure 3.7: Update Tree: nodes with block zero are highlighted

Each node stores information about U other nodes, where U is a constant chosen

locally. The bit vectors within an update are locally stored in a data structure known

as the update tree (see Figure 3.7). Bit vectors corresponding to individual nodes form

the leaves of the tree, each parent is a bit vector of the logical OR of its children, and

the root of the tree is the logical OR of all updates. This structure can then be used to

efficiently answer queries of the form “which blocks have not been retrieved from the

web server”, and “which set of machines has downloaded this specific block”. Only a

single bit vector is stored for any peer, and newer vectors from a peer (with more bits

64

set) replace any existing vectors from this peer. The least hop count for a given node id

is also saved; this approximates the shortest path to the node, and is used in estimating

the mesh size (described next).

3.3.2 Group Size Estimation

A number of the algorithms that Slurpie uses assumes that we know n, the total number

of nodes downloading a given file, so it is important to be able to accurately estimate

that number. Recall that U is the number of updates that any node stores. If n ≤ U ,

then as time progresses and updates propagate, each node receives information about

every other node in the system, and can very accurately estimate n. However, the case

where n > U is more interesting.

We know from random graph theory that for an r-regular graph, the mean dis-

tance d between nodes is proportional to logr−1n. Solving this equation for n, we get

n = O((r − 1)d). The mesh formed by Slurpie is not exactly an r-regular graph, as

nodes have different numbers of edges, and it is impossible for a single node to know

the exact distance counts to all nodes in the system when n > U . However, using the

U updates in the update tree, it is possible to estimate averages for both hop counts

and degrees to gain estimates for d and r, and thus an estimate for n. Note that such an

estimate becomes more accurate as n increases. In Section 6.5, we show that in sim-

ulations, this approximation provides reasonable estimates for n, even for relatively

small values of U .

3.3.3 Downloading Decisions

In Slurpie, blocks served by peers are downloaded before blocks served by the source

server. When multiple peers have the same block, we choose a peer uniformly at

65

random. In an effort to take advantage of an open TCP window, once a connection to

a peer has been established, the node downloads any blocks that it does not have from

that peer.

In general, multiple downloading connections are opened in parallel, and it is a

non-trivial question to decide how many connections is optimal. Here, Slurpie again

makes use of the bandwidth estimation algorithm. The algorithm is queried every

second, and if it returns underutilized, and there exist hosts that have blocks that the

local node does not have, a new connection is opened.

3.3.4 Backing Off

Slurpie nodes only connect to the server if they have excess capacity, and know of no

other peers that can provide them useful data blocks. Recall, however, that a design

goal of the Slurpie protocol is to control the load on the source server independent of

the number of peers in the Slurpie mesh. We ensure this constant load property by

employing a random backoff, and in effect, system throughput increases as peers do

not go to the server, even if the server is the only node that has a block they need.

This is because if a large enough set of nodes opened simultaneous connections to

the server for even a single block, none of the nodes would get their data, and overall

system throughput would tend to zero.

Ideally, the host with the best connection to the server would be the sole machine

connected to the server, and everyone else would receive their data from this host.

There are, however, two problems with this method:

• The best host could download the data and then leave the system, and the entire

process would have to repeat again; and

• Finding the best host is probably difficult, especially since this has to be deter-

66

mined quickly, dynamically, and without server support, and without probing

the server (path).

Instead, we use the following scheme: Every time period τ , each eligible peer de-

cides to go to the server with probability k/n where n is the estimate of the nodes in

the system, and k is a small constant. The effect is that, on average, there will be k

connections from the Slurpie mesh to the server at any time, and the number of con-

nections to the server over time is exactly modeled by a binomial distribution with

mean k. Intuitively, k = 1 is optimal, as it is closest to the ideal on average. How-

ever, setting k = 1 is too pessimistic, and results in no connections at the server for

extended periods of time (about 30% of the time). In practice, we choose k = 3, which

assuming k << n implies there is at least one connection at the server about 90% of

the time.

If we view this backoff scheme as essentially time division multiplexing, then the

parameter τ becomes the length of the time slice. Logically, τ should be chosen to be

long enough to guarantee some amount of progress, but short enough to ensure some

amount of fairness. In this way, even a set of hosts with diverse bandwidth resources

can make progress, as statistically over long downloads all hosts will eventually fetch

some blocks from the server.

3.3.5 Block Size

The number of blocks a file is divided into presents a trade off between download

parallelism and overhead. A small number of blocks is more efficient since it allows

TCP connection overheads to be amortized, but smaller blocks reduce parallelism. As

number of blocks increases, the size of the bit vector and the Slurpie control over-

head increases. Instead of picking the number of blocks, we choose a fixed block size,

67

256KB, and let the number of blocks vary with the size of the file. We chose 256KB

after conducting experiments on an unloaded system with different block sizes. A

256KB block was the smallest size at which the TCP overhead was effectively amor-

tized (< 1%). Further, the 256KB block size keeps the bit vector to a manageable

size for large files (50 bytes for a 100MB file). It is worth noting that modern HTTP

and FTP servers support downloading blocks of arbitrary sizes and offsets. HTTP 1.1

implements this functionality via the Range tag, and FTP can be made to simulate this

behavior with the restart (REST) command.

3.3.6 Bandwidth Estimation Technique

Slurpie requires that the bandwidth estimation algorithm only report three different

states: underutilized, at-capacity, and throttle-back. The main design criterion of

our bandwidth estimation algorithm is efficiency: Slurpie peers cannot use expensive

probes [33, 82, 69] to determine precise bandwidth usage or availability. Instead, the

following simplistic approach suffices: we assume that the user inputs a coarse grained

bandwidth estimate of the form “Modem”, “T1/DSL”, “T3”, etc... that forms the ini-

tial maximum bandwidth estimateBmax. Next, we measure the sum of actual achieved

throughput over all data connections over a 1 second interval, and label that Bact. We

maintain a moving average of successive Bact values, calculating an average through-

put, and the standard deviation std of that distribution. Using these numbers, if Bact

drops more than one standard deviation than the average, we report throttle-back. If

Bact is more than one standard deviation less thanBmax, we report underutilized, else

we report at-capacity. If at any time Bact > Bmax, we set Bmax = Bact.

68

3.4 Experiments

In this section, we present results from our implementation of Slurpie, and compare

against existing protocols. We begin with a description of our implementation (Sec-

tion 3.4.1), and describe our experimental setup next.

3.4.1 Slurpie Implementation

Slurpie has been implemented in multi-threaded C on the GNU/Linux system. It cur-

rently has a command line interface similar to the popular program wget [155], taking a

URL and various options as parameters. The source code is available from the Slurpie

sourceforge project[134], and should be portable to a number of platforms.

3.4.2 Experimental Setup

We experimented with Slurpie on two different networks: one on the local area net-

work the other on the wide-area network. We used a 48-node local testbed for runs

where we could precisely control the background traffic. These experiments were use-

ful to precisely quantify Slurpie overheads and benefits, and also to compare Slurpie

against BitTorrent in a predictable environment. We also deployed both Slurpie and

BitTorrent on the PlanetLab wide-area testbed.

Local Testbed Setup

The testbed that was setup consisted of an Apache 2.0.45 web server running on an

unused Linux machine with a 2.4.20 version kernel. The machine was connected to a

10Mb hub, and the the hub to a 100Mb switch, so as to force a 10Mb bottleneck at the

server. The clients consisted of 48 GNU/Linux machines with 100Mb connections to

69

Switch
Ethernet

10 Mb/s

Switch
Ethernet

1 Gb/s

48 Linux Clients

. . .
100 Mb/s

Figure 3.8: Local area testbed setup. The server is connected using a 10Mbps link to

force a bottleneck.

a separate 100Mb switch, and the two switches were connected by a series of gigabit

Ethernet links, as shown in Figure 3.8. Each client machine was a 650Mhz Pentium III

with 768MB of RAM. In each experiment, a 100MB file was downloaded from of the

web server by variable numbers of clients concurrently. The 10Mb hub is important,

as by assumption, it is the server, not the client, that is the bottleneck.

PlanetLab Setup

We ran Slurpie on the PlanetLab[114] wide area network. PlanetLab consists of 55+

different sites, and 160+ different machines distributed geographically around the

world. The same web server was used from the local area network tests, but with

different network connectivity to the clients. From the 100MB switch connected to the

web server, there is a 1Gb/s link to machines participating in Internet2, and a 95Mb/s

link to machines on the general Internet. A list of machines was retrieved from the

PlanetLab website, and one machine per site was chosen at random.

3.4.3 BitTorrent Setup

To compare Slurpie’s performance to a comparable protocol, we downloaded the most

current version of BitTorrent (version 3.2.1). To facilitate scripting, all experiments

70

were done using Bit Torrent’s “headless” mode, as opposed to GUI or Curses. Bit-

Torrent’s normal mode of operation is not to terminate after finishing downloading the

file, but instead to persist indefinitely. For our experiments, we modified the BitTorrent

code to terminate clients after a configurable wait after the file download is complete.

In all experiments, both Slurpie and BitTorrent clients persist for the same amount of

time after each experiment.

3.4.4 Results

In the results that follow, unless otherwise stated, we use the parameters listed in Table

3.1. By default, for experiments with concurrent clients, each successive client is

started 3 seconds after the previous one. (We also present results in which all clients

start simultaneously). In all of the experiments, we consider the following performance

metrics: total completion time and server load. The first determines client benefit from

using Slurpie, and the second quantifies the benefit to the server. Finally, we present

simulation results that show how our network size estimation algorithms perform.

Parameter Description Value

k k/n clients go to server 3

τ Server connection length 4 seconds

σ Initial Update Rate 8/second

η Initial Number of Neighbors 10

m Mirror Time (described below) 2 seconds

U Number of Updates Stored 100

ψ Per File State at Topology Server 5

Table 3.1: Default Slurpie Parameters

71

Local Testbed Results

First, we compute a baseline measure by measuring the time for a single client to down-

load the 100MB file uncontested using HTTP. The baseline was measured 5 times, and

the average value was used. It was assumed that all machines would have the same

baseline. In the first experiment, we vary the number of concurrent clients that down-

load the 100MB file from the server. In Figure 3.9, we plot the completion time for

plain HTTP, BitTorrent, and Slurpie as a function of the pre-computed baseline time.

For example, with 48 concurrent clients, each client, on average received only 2% of

their baseline bandwidth with plain HTTP. The performance was restored to 88% with

BitTorrent, and improved to 1.76 times the baseline with Slurpie. Each data point is

the average measurement across active clients and then averaged across 10 runs.

As expected, these results clearly show how performance deteriorates with plain

HTTP as files gain popularity. In our experiments, the BitTorrent protocol restores

performance to essentially the baseline. For the vast majority of clients using Slurpie,

performance increases as the number of peers in the network increases (recall that

in these experiments, we require clients to persist only for 2 seconds after they have

downloaded the entire file). Overall, this is an encouraging result indeed, and as we

show later in this section, clients that join the network late are able to download the

entire file at their own maximum download rate, regardless of the server capacity.

In Figure 3.10, we plot the cumulative distribution of the completion times of

clients from the 48 concurrent node runs. Once again, each data point is an aver-

age of 10 runs. Compared to BitTorrent, Slurpie decreases average download time by

51%; more importantly, Slurpie provides more consistent performance, and the worst

Slurpie client (which is the first client that joined) completes more than 5.4 times faster

than the worst BitTorrent client.

72

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20 25 30 35 40 45 50

F
ac

to
r

Im
pr

ov
em

en
t

Number of Clients

slurpie
http

BitTorrent

Figure 3.9: Normalized completion time for varying number of clients

To understand the steady-state dynamic of Slurpie better, we conducted a different

experiment in which 245 clients joined the network, once again separated by 3 sec-

onds each. In Figure 3.11, we plot the completion times of these clients. The x-axis is

ordered by the order of the clients’ arrival times into the system. The horizontal line

is the baseline completion time (i.e. the amount of time a single client takes to down-

load the file using plain HTTP, if there are no other clients in the system). There are

several points to note: the first few clients take longer than the baseline — this is be-

cause they have to download the data mostly from the server, and pay for Slurpie over-

heads as well. However, once the file permeates the Slurpie mesh, the vast majority of

clients get the file 2–4 times faster. There is an interesting periodic behavior evident

in the completion times. This is because once the complete file is downloaded into the

Slurpie network, it is distributed quickly using the mesh. However, soon clients who

have the complete file leave the network (2 seconds after their download is complete),

and some blocks have to be fetched from the server. This slows down completion time

for a few clients who have to wait for the slow source download. However, as soon

73

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

C
D

F

Time (s)

Slurpie
BitTorrent

Figure 3.10: CDF of completion times, 48 concurrent nodes

as these blocks reappear in the Slurpie network, performance increases back up until

these nodes leave the network and the cycle repeats. The periodic behavior is mitigated

if clients persist longer in the network.

3.4.5 PlanetLab Results

We repeated the same experiment over the wide-area PlanetLab testbed. In Figure 3.12,

we present the normalized completion times of varying numbers of clients using both

BitTorrent and Slurpie. Once again, Slurpie outperforms BitTorrent across the client

set, and our results show that both the average and maximum time taken by Slurpie

is better than BitTorrent in all runs. Note that as the number of clients increases, the

relative performance with respect to the baseline reduces somewhat on the PlanetLab

testbed (whereas on our local area network, the relative performance increases). This

is because the PlanetLab hosts were being rather heavily used during the period we

conducted our tests, and many of the hosts do not have much excess capacity for down-

74

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250

T
im

e
(s

)

Client Index, sorted by start time

Completion Time for Single Client
 with No Contention (93 seconds)

Figure 3.11: Absolute completion times, 250 nodes

loading faster from peers. Thus, as the client set increases, the number of clients with

extra resources decreases as a proportion, and the average with respect to the baseline

also decreases. We believe the PlanetLab hosts are uncommonly loaded compared to

most Internet hosts, and in a “real” deployment, Slurpie performance would indeed

increase with larger client sets.

Mirror Time

In Slurpie, we do not require nodes to persist in the system after they finish down-

loading their file. It is nevertheless interesting to study the effects of benevolence, i.e.

consider how completion times decrease as users stay longer after completing their

download. In Figure 3.13, we plot completion times (again normalized against the

baseline completion time), for 48 concurrent users, as users persist in the system. In-

terestingly, for Slurpie, almost all benefits of such mirroring is achieved if users stay

in the system for only 3 extra seconds. For much larger files, we expect this number

75

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 10 20 30 40 50 60

F
ac

to
r

Im
pr

ov
em

en
t

Number of Clients

Slurpie
Bittorrent

Figure 3.12: Normalized completion time vs. number of clients on the PlanetLab

to increase, but it is clear even nominal amounts of benevolence leads to substantial

benefit.

3.4.6 Coordinated Backoff

The most novel component of Slurpie is its coordinated backoff algorithm. In this sec-

tion, we show how performance increases as the number of clients that go to the server

is carefully controlled. In Figure 3.14, we plot the number of connections at the server

with 48 concurrent clients with and without the backoff algorithm enabled. Without

backoff, clients eventually all go the server together because some blocks are not avail-

able in the Slurpie network. The backoff algorithm carefully controls the number of

clients that visit the server, and on average, the Slurpie network maintains the expected

number of connections (3) to the server. Note that the number of connections drops off

around 100 seconds because almost all clients complete their download by that time.

As expected, the backoff algorithm controls server load. Client-side performance is

76

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 0 5 10 15 20 25 30

%
 o

f B
as

el
in

e
tim

e

seconds in the system after finishing

Figure 3.13: Normalized completion time vs. mirror time

also improved (Figure 3.15). Specifically, without backoff, the Slurpie protocol is not

able to ultimately gain from the larger numbers of nodes in the network. A closer

look at our data shows that without backoff, the clients all quickly download almost all

blocks, and than all visit the server for a few (sometimes just one) blocks. However,

since the server is heavily loaded, all benefits from having received the other blocks

quickly is negated.

Effects of Flash Crowds

In our previous experiments, we start concurrent clients 3 seconds apart deterministi-

cally. We have also experimented with random offsets between clients. However, in

the worst case, all clients would start exactly at the same time. In Figure 3.16, we plot

the number of open connections at the web server over time as the number of clients

on the LAN that start at the same time is varied from 10–48.

Recall that a client tries to estimate the number of nodes in the mesh n, and tries to

77

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180

N
um

be
r

of
 C

on
ne

ct
io

ns

Time(s)

No Backoff
With Backoff, k=3

Figure 3.14: Number of Connections at the server, over time

connect to the server with probability k/n, where k is set to 4. The y-axis in the plot

is set to the same scale as Figure 3.14. Recall that in that experiment, without backoff,

even with clients started 3-seconds apart, the number of simultaneous connections

increased to more than 40. In Figure 3.16, there are different curves for 10, 20, 32, and

48 simultaneous connections, but it is difficult to distinguish these cases. Thus, the

Slurpie size estimation algorithm is effective: server load is independent of the Slurpie

mesh size. We note that 48 clients arriving at exactly the same time is indicative of

severe congestion (several thousand new connections per second), and Slurpie is able

to easily contend with such load spikes.

3.4.7 Group Size Estimation

In an effort to gauge the quality of the group size estimation, we simulated the neighbor

mesh algorithm with large group sizes. The simulator took three parameters, n, the

number of nodes in the system, r, the target degree of each node, and U , the number

78

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 15 20 25 30 35 40 45 50

F
ac

to
r

Im
pr

ov
em

en
t

Number of Clients, 3s Apart

Backing Off
No Backing Off

Figure 3.15: Performance effects of the back off algorithm

of updates stored. Then, using the formula described in Section 3.3, the simulation

returned n′, the average estimate of the system size. We present results in Table 3.2

for meshes with target out degree fixed at 10. The estimation error levels decrease as

the state per node increases, and as the number of nodes in the system increases. This

is because the estimation is derived from an asymptotic formula which provides better

bounds with larger group sizes. Note that in almost all realistic scenarios, we do not

expect to use the estimation with less than 1000 nodes in the system (with 1000 nodes,

each client has to keep a maximum of 6MB of update state for a 100MB file). Finally,

note that the backoff algorithm does not require very precise estimations of group size,

e.g. estimating n with ±33.3% error and k = 3 will, on average, result in ± one extra

connection to the source server.

79

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250

N
um

be
r

of
 C

on
ne

ct
io

ns
 a

t S
er

ve
r

time (s)

10 clients
20 clients
32 clients
48 clients

Figure 3.16: Number of connections at server with different numbers of clients, all

started simultaneously

3.5 Discussion

In the results section, we have concentrated entirely on the data transfer dynamics of

Slurpie. In this section, we discuss the implementation and deployment of the two

other components: the topology server and security issues.

3.5.1 Topology Server

The topology server in Slurpie serves the same purpose as the rendezvous point in

Narada [36] or the BSE in the NICE [17] protocol. One possible concern is the scala-

bility of the Slurpie topology server: a scalable network does no good if clients cannot

join because the server required for joining is overloaded! In practice, the topology

server stores the IP address and port of the last five nodes to request a given file. This

amounts to state of 30 bytes per file plus the file name, so any reasonable machine can

80

n 20 50 100

200 17.5% 13.2% 10.9%

1000 5.9% 4.2 % 2.6%

5000 11.3% 7.5% 6.0%

10000 3.8% 0.8 % 0.4%

Table 3.2: % Error in Group Size Estimation

store state for millions of files. Since the server performs no client-specific processing,

the processing requirements at the server are minimal.

Of more concern is the network overhead at the topology server. Upon joining

the system, every node makes a TCP connection to the topology server, tells it which

file they are downloading, and then receives the IP address/port pairs of the last 5

nodes to download that same file. The entire transaction uses one packet in either

direction, plus TCP overhead, so it is conceivable for a single server to handle tens of

thousands of downloads per second. If the Slurpie system grows to the point where

this is insufficient, the topology server functionality could be distributed. Specifically,

a number of hosts that provide this service could form a DHT [146, 117, 125], and the

file name could be used to look up the server responsible for the specific file. However,

we do not believe the scalability of the topology server will be the limiting factor in

the deployment of a system such as Slurpie.

3.5.2 Security Concerns

Using Slurpie introduces potentially new security and data integrity concerns for end

hosts. In the best case, Slurpie clients will download almost all parts of files from

unknown nodes on the Internet. However, we argue that this does not add significantly

81

new security risks. A security integrity check should be performed for sensitive files,

even if it is downloaded from the source server. As we mentioned in Section 3.1,

servers often publish an MD5 or similar checksum which is used to verify file in-

tegrity. Such a checksum could be used by Slurpie clients as well. It is possible for a

determined adversary to attack the Slurpie network by propagating both false blocks

and a corresponding false checksum. Note that this is a problem even in the source

download case, since a determined adversary can mount any number of attacks that

base IP is susceptible to, including DNS spoofing or TCP connection hijacking. The

solution, of course, is to distribute a signed integrity check, where the clients can in-

dependently verify the checksum since it is signed by a trusted server. Such a solution

requires an out-of-band channel by which clients get the server’s public key, and once

implemented, is sufficient for both plain IP and for Slurpie.

Another potential problem is a DoS attack against the Slurpie topology server. If

the topology server does not function, new nodes cannot join the network. Once again,

we believe this is a general problem and not specific to Slurpie, and the solutions are

no different from the ones that can be employed to protect any source server.

3.6 Conclusions and Future Work

In this chapter, we have described the Slurpie protocol for scalable downloading of

bulk data over the Internet. We believe the Slurpie protocol fulfills its design goals of

system scalability, improved client performance, and insulation of the server from load

variance in the client population. We have presented extensive experimental analysis

of different components of the Slurpie protocol using a complete implementation over

a local- and wide-area testbed. Specifically, our results show that client performance

82

increases as the client population increases. This is because clients can now download

parts of files from other clients without accessing highly contested server resources.

Further, our results indicate that the Slurpie randomized back off scheme is effective,

and is able to precisely control server load regardless of the size or variation in client

population.

There are a number of interesting open issues with Slurpie design. One issue is that

a cooperative system like Slurpie is only useful if many people use it, i.e. no benefits

are gained from using Slurpie if only one Slurpie client is downloading a given file.

One possible path to encourage Slurpie usage is to make the topology server aware of

well known mirror sites (e.g. ftp.gnu.org has many mirrors), and in the joining

phase, can communicate multiple mirrors to the client. Then, the client can adaptively

download in parallel from multiple source servers if there are not many Slurpie peers

in the system. A nice property of this type of system would be increased performance

independent of the number of users in the system. Also, we believe it is possible

to implement better estimates of the network size, especially if the underlying graph

structure of the Slurpie mesh was studied in more detail. One problem with the current

interface is it is insufficient for mass deployment, since it requires users to explicitly

invoke the Slurpie protocol to download popular files. An obvious extension is to

deploy a Slurpie proxy that intercepts all user download requests, and automatically

routes requests for popular files to a Slurpie network. A number of the contributions of

this work are independent of the data transfer path, so another avenue of research might

be to implement Slurpie’s data transfer using more sophisticated encoding schemes,

e.g. erasure codes.

It is also worth considering schemes where (possibly with a small amount of server

side assistance), clients can quickly tell whether a particular block they have down-

83

ftp.gnu.org

loaded is corrupt or not. It is trivial to implement such a scheme with O(#blocks)

overhead, but it is not clear if an asymptotically better scheme is feasible. Lastly,

our evaluation was constrained to fifty node testbeds. While this is a good beginning,

evaluation on larger networks would obviously provide more compelling evidence.

84

Chapter 4

Shared Resources with Selfish Users: NICE Cookies

4.1 Introduction

NICE1 is a platform for implementing cooperative applications over the Internet. We

define a cooperative application as one that allocates a subset of its resources, typically

processing, bandwidth, and storage, for use by other peers in the application. We

believe a large class of applications, including on-line media streaming applications,

multi-party conferencing applications, and emerging peer-to-peer applications, can all

significantly benefit from a cooperative infrastructure. However, cooperative systems

perform best if all users do, in fact, cooperate and provide their share of resources to

the system. In this chapter, we present techniques for identifying cooperative and non-

cooperative users. Using our schemes, individual users can assign and infer “trust”

values for other users. The inferred trust values represent how likely a user considers

other users to be cooperative, and are used to price resources in the NICE system.

We focus on distributed solutions for the trust inference problem. We decompose

the distributed trust inference problem into two parts: a local trust inference compo-

1 NICE is a recursive acronym for “NICE is the Internet Cooperative Environment” (See http:

//www.cs.umd.edu/projects/nice).

85

http://www.cs.umd.edu/projects/nice
http://www.cs.umd.edu/projects/nice

nent that requires trust information between principals in the system as input and a

distributed search component that efficiently gathers this individual trust information

to be used as input for local inference algorithms. There already exist systems, e.g.,

e-bay[151], that have a centralized user-evaluation system. Our goal is to enable open

applications where users do not have to register with an authority to be a part of the

system. Centralized solutions do not scale in open systems, since malicious users can

overwhelm the central “trust” server with spurious transactions. The most widely used

decentralized trust inference scheme is probably the PGP web of trust [163], which

allows one level of inference. We present a new decentralized trust inference scheme

that can be used to infer across arbitrary levels of trust. There is no trusted-third-party

or centralized repository of trust information in our scheme. Users in our system only

store information they explicitly can use for their own benefit. We show that our algo-

rithms scale well even with limited amount of storage at each node, and can be used

to efficiently implement large distributed applications without involving explicit au-

thorities. Further, our solutions allow individual users to compute local trust values

for other users using their own inference algorithm of choice, and thus can be used to

implement a variety of different policies.

4.1.1 Cooperative Systems

The notion of a cooperative system is not unique in networking; in fact, packet for-

warding in the Internet is a cooperative venture that utilizes shared resources at routers.

Our overall goal in NICE is to extend this notion to include end-applications and pro-

vide an incentive-based framework for implementing large distributed applications in

a cooperative manner. Clearly, an immense amount of distributed resources can be har-

vested over the Internet in a cooperative manner. This observation is key in the recent

86

surge of peer-to-peer (p2p) applications, and we believe the next generation of such

p2p applications will be based upon the notions of cooperative distributed resource

sharing.

A number of interesting distributed algorithms for p2p systems, most notably in

the area of distributed resource location, have recently been introduced. All of these

schemes, however, assume that all peers in the system implicitly cooperate and imple-

ment the underlying protocols perfectly, even though it may not be explicitly beneficial

to do so. Consider the following examples:

• In Gnutella [60], peers forward queries flooded on behalf of other users in the

system. Each forwarded message consumes bandwidth and processing at each

node it visits.

• In Chord [146], a document is “mapped” to a particular node using a hash func-

tion. Thus, a peer serves a document that is, in fact, owned by some other

node in the system. Thus, peers in the system expend their own resources to

serve documents for other nodes in the system. This situation is not unique to

Chord; all hash-based location systems, including CAN [117], Bayeux [162],

Pastry [125], have this property. It is possible to build a system in which nodes

only serve a pointer to the document data and also to implement various load

balancing schemes; however, even in the best load-balanced system, there can

be temporary overloads when a large amount of local resources are expended

due to external serving.

• A number of relay-based streaming media protocols have been developed and

demonstrated. In these protocols, nodes devote resources such as access band-

width for serving their child nodes.

87

In each example above, any individual user may choose not to devote local re-

sources to external requests, and still get full benefit from the system. On the other

hand, the integrity and correct functioning of the system depends on each user imple-

menting the entire distributed protocol correctly and selflessly. However, experience

with deployed systems, such as Gnutella and previously Napster, show that only a

small subset of peers offer such selfless service to the community, while the vast ma-

jority of users use the services offered by this generous minority [5]. The goal of this

work is to efficiently locate the generous minority, and form a clique of users all of

whom offer local services to the community.

4.1.2 Model

In this chapter, we assume that a (p2p) system can be decomposed into a set of of

two-party transactions. A single transaction can be a relatively light-weight operation

such as forwarding a Gnutella query or a potentially resource intensive operation such

as hosting a Chord document. Next, we assume that the system consists of a set of

“good” nodes that always implement the underlying protocols correctly and entirely,

i.e. good users always fulfill their end of a transaction. The goal of our work is develop

algorithms that will allow “good” users to identify other “good” users, and thus, enable

robust cooperative groups. These are peer groups in which, with high probability,

each participant successfully completes their end of each transaction. Specifically, we

propose a family of distributed algorithms which can be used by users to calculate a

per-user “trust” value. The trust value for node B at a node A is a measure of how

likely node A believes a transaction with node B will be successful. In our system,

users store a limited amount of information about how much other users trust them,

and we present algorithms for choosing what information to store and how to retrieve

88

this trust information. Once relevant information has been gathered, individual users

may use different local inference algorithms to compute trust values.

It is important to note that we assume that good nodes are able to ascertain when

a transaction is successful. Clearly, in many cases, it is not possible to efficiently de-

termine whether a transaction fails (e.g. when a node sometimes does not serve Chord

documents that it hosts). It is even more difficult to determine whether a transaction

fails because of a system failure or because of non-cooperative users. For example,

consider the case when all users are cooperative but a document cannot be served due

to a network failure. We believe this problem is inherent in any trust-inference sys-

tem that is based on transaction “quality”. We discuss different policies for assigning

values to transaction quality in Section 4.4.

The overall goal of this work is to identify cooperative users. An ideal trust in-

ference system would, in one pass, be able to classify all users into cooperative or

non-cooperative classes with no errors. However, this is not possible in practice be-

cause non-cooperative users may start out as cooperative users. The specific goals of

our work are as follows:

• Let the “good” nodes find each other quickly and efficiently: Good nodes should

be able to locate other good nodes without losing a large amount of resources

interacting with malicious nodes. This will allow NICE to rapidly form robust

cooperative groups.

• Malicious nodes and cliques should not be able to break up cooperating groups

by spreading mis-information to good nodes. Specifically, we want to develop

protocols in which malicious nodes are rapidly pruned out of cooperative groups.

Further, we assume malicious nodes can disseminate arbitrary trust information,

and the cliques formed of good nodes should be robust against this form of

89

attack.

In Section 4.4, we describe algorithms that achieve our goals with low run-time over-

head, both in terms of processing and network bandwidth usage. We believe this algo-

rithm is the first practical, robust, trust inference scheme that can be used to implement

large cooperative applications.

The rest of this chapter is structured as follows: in the next section, we discuss

prior work in distributed trust computations. In Section 4.3, we present an overview of

the NICE system, and describe how distributed trust computations are used by NICE

nodes. We describe our algorithms and local node policies in Section 4.4, present

simulation results of the trust search in Section 6.5, and simulated results of a NICE

resource trading system in Section 4.6. We discuss our conclusions in Section 4.7.

4.2 Related Work

In this section, we discuss prior work in trust inference and present a brief overview of

systems that are based on notions of trust and incentive.

The concept of “trust” in distributed systems is formalized in [97] using social

properties of trust. This work considers an agent’s own experience to obtain [-1, 1]-

valued trust, but does not infer trust across agents. Abdul-Rahman et al. [1] describe a

trust model that deals with direct experience and reputational information. This model

can be used, as is, in NICE to infer trust. Yu et al. [158] propose a way to compute a

real-valued trust in [-1, 1] range from direct interactions with other agents. A product

of trust values is used for reputation computation, and undesirable agents are avoided

by having an observer of bad transactions disseminate information about the bad agent

throughout the network. This work is primarily about using social mechanisms for

90

regulating users in electronic communities, and the techniques developed here can

be used in NICE. In this chapter, we focus on algorithms for efficiently storing and

locating trust information.

Another scheme [2] focuses on management and retrieval of trust-related data, and

uses a single p2p distributed database which stores complaints about individuals if

transactions with them are not satisfactory. When an agent p wants to evaluate trust for

another agent q, it sends a query for complaint data which involves q, and decides q’s

trustworthiness with returned data, using a proposed formula. However, this system

implicitly assumes that all participants are equally willing to share the communal data

load, which may not be true in many p2p systems [5]. Such a system is also vulnerable

to DoS attacks, as there is no preventative measure from inserting arbitrary amounts of

complaints into the system.

PGP [163] is another distributed trust model that focuses on proving the identity

of key holders. PGP uses user defined thresholds to decide whether a given key is

trusted or not, and different introducers can be trusted at finite set of different trust

levels. Unlike NICE, trust in PGP is only followed through one level of indirection;

i.e. if A is trying to decide the trust of B, there can be at most one person, C, in the

trust path between A and B. There are also a number of popular web sites, e.g. e-bay

and Advogato (see www.advogato.org) that use trust models to serve their users.

However, all data for these sites is stored at a trusted centralized database, which may

not be ideal for open systems, and lead to the usual issues of scalability and single

point of failure.

The Eigentrust [77] system focuses on taking pairwise trust values, i.e. the trust ci,j

for all pairs i, j, and attempts to calculate a single global trust value for each principal.

It accomplishes this task by computing in a distributed manner the principal eigenvec-

91

www.advogato.org

tor of the entire pair-wise trust matrix. In the current Eigentrust system, when node

i and node j have not interacted, ci,j is assumed to be zero. The protocol presented

in this chapter is complementary to Eigentrust, and can be used to infer unknown ci,j

values.

A system similar to NICE is Samsara[43]. While NICE attempts to solve dis-

tributed resource allocation problems in resource neutral manner, Samsara focuses

strictly on remote file storage. In Samsara, nodes exchange chunks of objects, and

query each other to verify that nodes are correctly storing the objects they claim to.

If a particular node fails a query, other nodes in the system begin to probabilistically

drop the node’s objects. The probability of a given object being dropped increases as

the number of consecutive failed queries increases. The argument is made that it is not

possible with current bandwidth limitations for a malicious node to replace dropped

objects fast enough to counteract the dropping rate. However, it is not clear how Sam-

sara’s bandwidth restriction defense fairs against a more sophisticated attacker that

employs forward error correction (FEC) to entangle multiple objects. Samsara does

not have a notion of trust inference.

4.3 Overview of NICE

In this section, we present a brief overview of the NICE platform. Our goal is to pro-

vide context for the distributed trust computation algorithms presented in Section 4.4.

NICE is a platform for implementing cooperative distributed applications. Applica-

tions in NICE gain access to remote resources by bartering local resources. Transac-

tions in NICE consist of secure exchanges of resource certificates. These certificates

can be redeemed for the named (remote) resources. Non-cooperative users may gain

92

pricing

 local
resources

secure
bartering/
trading

trust inference

resource
location

 resource
advertisement

NICE

applications node
owner

 local policy

 secure
exchange

Figure 4.1: NICE component architecture: the arrows show information flow in the

system; each NICE component also communicates with peers on different nodes. In

this chapter, we describe the trust inference and pricing components of NICE.

“free” access to remote resources by issuing certificates that they do not redeem.

NICE provides a service API to end-applications, and is layered between the trans-

port and application protocols. The NICE component architecture is presented in Fig-

ure 4.1, with this chapter’s contributions in bold. Applications interact with NICE

using the NICE API, and issue calls to find appropriate resources. All of the bar-

tering, trading, and redeeming protocols are implemented within NICE and are not

exposed to the application. These sub-protocols share information within themselves

and are controlled by the user using per-node policies. NICE peers are arranged into

a signaling topology using our application-layer multicast protocol [18]. All NICE

protocol-specific messages are sent using direct unicast or are multicast over this sig-

naling topology. The exact details of the remaining sub-protocols, e.g., bartering, re-

source location, secure exchange, and the NICE API itself remain the subject of future

work. For the purpose of building and inferring trust, we treat resources and transac-

tions as abstractions throughout the chapter.

93

4.3.1 NICE Users and Pricing Policies

Until now, we have used the terms user and node in an imprecise manner. In NICE,

each user generates a PGP style [163] identifier which includes a plaintext identifi-

cation string and a public key. The key associated with a NICE identifier is used for

signing resource certificates, for trading resources, and for assigning trust (Section 4.4)

values.

It is important to note that neither the NICE identifier nor the associated key needs

to be registered at any central authority; thus, even though NICE uses public keys, we

do not require any form of a global PKI. Thus, NICE can be used to implement open

p2p applications without any centralized authority. Since there is no central registra-

tion authority in NICE, a single user can generate an arbitrary number of keys and

personas. However, in NICE, pricing is coupled with identity, i.e., new users have to

pay more for services until they establish trust in the system. Thus, it is advantageous

for nodes to maintain a single key per user and not to change keys frequently. This

property makes NICE applications robust against a number of cheap identity based

denial-of-service attacks that are possible on other p2p systems[57].

The goal of the default policies in NICE is to limit the resources that can be con-

sumed by cliques of malicious users. These policies work in conjunction with the trust

computation which is used to identify the misbehaving nodes. In practice, NICE users

may use any particular policy, and may even try to maximize the amount of resources

they gain by trading their own resources. The primary goal of the default policies is to

allow good users to efficiently form cooperating groups, and not lose large amounts of

resources to malicious users. The pricing and trading policies are used to guard against

users who issue spurious resource certificates using multiple NICE identities. We use

two mechanisms to protect the integrity of the group:

94

• Trust-based pricing

In trust-based pricing, resources are priced proportional to mutually perceived

trust. Assume trust values range between 0 and 1, and consider the first transac-

tion between Alice and Bob where the inferred trust value from Alice to Bob is

TAlice(Bob) = 0.5, and TBob(Alice) = 1.0. Under trust-based pricing, Alice will

only barter with Bob if Bob offers significantly more resources than he gets back

in return. Note however that as Bob conducts more successful transactions with

Alice, the cost disparity will decrease. This policy is motivated by the observa-

tion that as Alice trades with a principal with lower trust she incurs a greater risk

of not receiving services in return, which, in turn, is reflected in the pricing.

• Trust-based trading limits

In these policies, instead of varying the price of the resource, the policy varies

the amount of the resource that Alice trades. For example, in an scenario with

Alice and Bob, Alice may trade some small, trivial amount of resources with

Bob initially, but once Bob has proven himself trustworthy, Alice increases the

amount of resources traded. This policy assures that when trading with a princi-

pal with relatively low trust, Alice bounds the amount of resources she can lose.

The simulated results presented in Section 4.6 use trust based trading limits.

4.4 Distributed Trust Computation

We assume that for each exchange of resources, i.e., a transaction, in the system,

each involved user produces a signed statement (called a cookie) about the quality of

the transaction. For example, consider a successful transaction t between users Alice

and Bob in which Alice consumes a set of resources from Bob. After the transaction

95

completes, Alice signs a cookie c stating that she had successfully completed the trans-

action twith Bob. Bob may choose to store this cookie c signed by Alice, which he can

later use to prove his trustworthiness to other users, including Alice 2. As the system

progresses, each transaction creates new cookies which are stored by different users.

Clearly, cookies have to be expired or otherwise discarded; the algorithms we present

later in this section require constant storage space.

We will describe the trust inference algorithms in terms of a directed, weighted

graph T called the trust graph. The vertices in T correspond exactly to the users in the

system. There is an edge directed from Alice to Bob if and only if Bob holds a cookie

from Alice. The value of the Alice→Bob edge denotes how much Alice trusts Bob

and depends on the set of Alice’s cookies Bob holds. Note that each transaction in the

system can either add a new directed edge in the trust graph, or relabel the value of an

existing edge with its new trust value.

Assume that a current version of the trust graph T is available to Alice, and sup-

pose Alice wishes to compute a trust value for Bob. If Alice and Bob have had prior

transactions, then Alice can just look up the value of Alice→Bob edge in T . However,

suppose Alice and Bob have never had a prior transaction. Alice could potentially infer

a trust value for Bob by following directed paths (ending at Bob) on the trust graph as

we describe below.

2It is also possible for Alice to keep a record of this transaction instead of Bob. In this alternate

model of trust information storage, users themselves store information about whom they trust, and can

locally compute the trust of the remote nodes they know of. This model, however, is susceptible to a

denial of service attack that we describe later in this section.

96

4.4.1 Inferring Trust on the Trust Graph

Consider a directed path A0 → A1 → . . . → Ak on T . Each successive pair of users

have had direct transactions with each other, and the edge values are a measure of how

much Ai trusts Ai+1. Given such a path, A0 could infer a number of plausible trust

values for Ak, including the minimum value of any edge on the path or the product of

the trust values along the path; we call these inferred trust values the strength of the

A0 → Ak path. The inference problem is somewhat more difficult than computing

strengths of trust paths since there can be multiple paths between two nodes, and these

paths may share vertices or edges. Centralized trust inference is not the focus of our

work, but it is important to use a robust inference algorithm. We have experimented

with different inference schemes, and we describe two simple but robust schemes. In

the following description, we assumeA (Alice) has access to the trust graph, and wants

to infer a trust value for B (Bob):

(Alice)

E

C D

F

B

0.6

0.9

0.7

0.7

0.8

0.9

0.9

0.8 A
(Bob)

Figure 4.2: Example trust graph: the directed edges represent how much the source of

edge trusts the sink.

• Strongest path: Given a set of paths between Alice and Bob, Alice chooses the

strongest path, and uses the minimum trust value on the path as the trust value

for Bob. The strength of a path can be computed as the minimum valued edge

97

along the path or the product of all edges along a path. Given the trust graph,

this trust metric can easily be computed using depth-first search. In the example

shown in Figure 4.2, we use the min. function to compute the strength of a path.

In this example, the strongest path is AEFB, and Alice infers a trust level of 0.8

for Bob.

• Weighted average of strongest disjoint paths: Instead of choosing only the

strongest path, Alice could choose to use contributions from all disjoint paths.

The set of disjoint paths is not unique, but the set of strongest disjoint paths

(modulo equi-strength paths) is and can be computed using network flows with

flow restrictions on vertices. Given the set of disjoint paths, Alice can compute

a trust value for Bob by computing the weighted average of the strength of all of

the strongest disjoint paths. The weight assigned to the Alice→X→ . . . →Bob

path is the value of the Alice→X edge (which represents how much Alice di-

rectly trusts X). In the example in Figure 4.2, ACDB is the other disjoint path

(with strength 0.6), and the inferred trust value from Alice to Bob is 0.72.

Both these algorithms are robust in the sense that no edge value is used more than once

and trust values computed are always upper-bounded by the minimum trust on a path.

Before any of these local algorithms can be used, the trust graph has to be realized in

a scalable manner, and (edge) values have to be assigned to cookies.

Also note that the trust graph is not necessarily connected. For example, if Alice

is new to the system, then there exists no path from her to Bob in the graph. In this

case, we must have some application specific policy to assign a default level of trust.

This policy is highly application specific, for example the level of trust for an unknown

node in a file sharing application should be higher than the default trust in a medical

professional referral service. Additionally, if we assume that each user maintains more

98

than lnN cookies, whereN is the number of users in the system and that the trust graph

approximates an r-regular random graph[23], then with high probability the random

graph remains connected. While a random graph is not necessarily a good model for

the trust graph itself, we use it to motivate our simulation parameter selections, and

show in Section 6.5 that it performs well.

Note that in order to infer trust for Bob, Alice does not need to access the entire

trust graph, but only needs the set of paths from her to Bob. In the rest of this section,

we describe schemes to store the trust graph and to produce sets of paths between

users in a completely decentralized manner over an untrusted infrastructure. We begin

with a discussion of different techniques for assigning cookie values, and describe our

distributed path discovery protocol in Section 4.4.3.

4.4.2 Assigning Values to Cookies

Ideally, after each transaction, it would be possible to assign a real number in the [0,1]

real-valued interval to the quality of a transaction and assign this as the cookie value.

In some cases, transactions can be structured such that this indeed is possible: e.g.

assume that Alice transcodes and serves a 400Kbps video stream to Bob at 128Kbps,

and according to a prior agreement, Bob signs over a cookie of value 0.75 to Alice.

The same transaction may have resulted in a cookie of value 0.9 if Alice had been able

to serve the stream at 256Kbps. In many cases, however, it is not clear how to assign

real-valued quality metrics to transactions. For example, in the previous example,

Alice could claim that she did serve the stream at 256Kbps, while network congestion

on Bob’s access link caused the eventual degradation of the quality to 128Kbps. It is,

in fact, easy to construct cases when it is not easily feasible to check the quality of

service. In most cases, however, we believe it is somewhat easier to assign a {0,1}

99

value to a transaction, i.e. either the transaction was successful, or it was not. As

applied to the previous example, Bob and Alice could negotiate a threshold rate (say

64Kbps) at which point he considers the entire transaction successful, and assigns a

1-valued cookie to Alice, regardless of whether the data was delivered at 64.5Kbps

or 400Kbps. Further, for many transactions, such as streaming media delivery, it is

possible for one party to abort the transaction if the initial service quality is not beyond

the 0-value threshold.

In the rest of this chapter , we assume that cookies are assigned values on the [0,1]

interval. However, it is possible to assign arbitrary labels to cookies, and to conduct

arbitrary policy-based searches as long as the requisite state is kept at each user. For ex-

ample, it is possible to construct a system where cookies take one of four values (e.g.,

“Excellent”, “Good”, “Fair”, and “Poor”), and users search for “Excellent”-valued

cookies that are less than one week old. All of the NICE path enumeration and infer-

ence schemes work correctly as long as cookies have a comparable value, regardless

of how users assign these values, and what range these values take.

One issue is who decides cookie values: by direct user intervention or by program.

There is a trade-off in the two approaches between the latency in assigning values

versus the accuracy of values. Cookies values that are assigned automatically, e.g., by

heuristic or rule, do not have to wait for an interactive user before being posted to the

trust network. However, in many cases it is possible to trick a heuristic into giving

good cookie values for marginal service. For example, Alice offers Bob 10GB of disk

space for one hour in exchange for one hour of computing time on Bob’s machine.

Bob takes the disk and allows Alice to use his computer, but runs additional jobs on

his computer such that Alice’s job is slowed. An automated cookie valuation might

give a high valued cookie for this transaction, but a human valuation would catch

100

Bob

G

ED

C

Alice

Bob

G

ED

C

Alice

Bob

G

ED

C

AliceC: 0.9,D
D: 0.8,G
E: 0.8,Bob

D: 0.9,G

G: 0.8,Bob Bob: 0.9

Bob: 0.6

fwd
along
random
edges

Directed
Forward

C does not
 fwd (no
digest hits)

Bob

G

ED

C

Alice

0.6

0.8

0. initial state: each user has a cookie
and a digest from each trusted user

1. forwarding along random cookie edges
2. after rand. fwds, queries are
 only fwded along digest hits
 and results sent back to Alice

3. trust paths (strongest
 path shown in bold)

directed
fwd

results

Figure 4.3: Different stages in the operation of the Alice→Bob search protocol. Edges

in this figure represent message flow. It is important to note that corresponding edges

in the trust graph point in the opposite direction.

Bob’s cheating, and return a low valued cookie.

4.4.3 Distributed Trust Inference: Basic Algorithm

In this section, we describe how users locate trust information about other users in our

system. This distributed algorithm proceeds as follows: each user stores a set of signed

cookies that it receives as a result of previous transactions. Suppose Alice wants to use

some resources at Bob’s node. There are two possibilities: either Alice already has

cookies from Bob, or Alice and Bob have not had any transactions yet.3 In the case

Alice already has cookies from Bob, she presents these to Bob. Bob can verify that

these indeed are his cookies since he has signed them. Given the cookies, Bob can

now compute a trust value for Alice.

The more interesting case is when Alice has no cookies from Bob. In this case,

3 There is yet a third possibility in which Alice has discarded cookies from Bob, but we assume that

this case is equivalent to Alice having no cookies from Bob

101

Alice initiates a search for Bob’s cookies at nodes from whom she holds cookies.

Suppose Alice has a cookie from Carol, and Carol has a cookie from Bob. Carol gives

Alice a copy of her cookie from Bob, and Alice then presents two cookies to Bob: one

from Bob to Carol, and one from Carol to Alice. Thus, in effect, Alice tells Bob, “You

don’t know me, but you trust Carol and she trusts me!” In general, Alice can construct

multiple such “cookie paths” by recursively searching through her neighbors. In effect,

Alice floods queries for Bob’s cookies along the cookie edges that terminate at each

node, starting with her own node. After the search is over, she can present Bob with an

union of directed paths which all start at Bob and end at Alice. Note that these cookie

paths correspond exactly to the union of directed edges on the trust graph which we

used for centralized trust inference. Thus, given this set of cookies, Bob can use any

centralized scheme to infer a trust value for Alice.

This basic scheme has several desirable properties:

• If Alice wants to use resources at Bob, she has to search for Bob’s cookies.

This is in contrast with the analogous scheme in which nodes themselves keep

records of their previous transactions. Under such a setting, if Bob did not know

Alice, he would have to initiate a search for Alice through nodes he trusted. A

malicious user Eve could mount an easy denial-of-service attack by continuously

asking other nodes to search for Eve’s credentials. In our system, nodes forward

queries on behalf of other nodes only if they have assigned them a cookie, and

thus, implicitly trust them to a certain extent.

• Alice stores cookies which are statements of the form “X trusts Alice”. Thus,

Alice only devotes storage to items that she can use explicitly for her own benefit,

and thus, there is a built-in incentive in the system to store cookies. In fact, if

Bob assigns a low-value cookie for Alice, she can discard this cookie since this

102

is, in effect, a statement that says Bob does not trust Alice. In general, users store

the cookies most beneficial to their own cause, and do not forward messages on

behalf of users they do not trust.

• The transaction record storage in the system is completely distributed, and if two

nodes conduct a large number of spurious transactions, only they may choose to

hold on to the resultant state. In contrast, in a centralized transaction store,

these nodes could easily mount a denial-of-service attack by overwhelming the

transaction store with spurious transaction records.

Note that a malicious node may choose to drop or corrupt trust queries sent to

it. However, as the network evolves, trust lookup queries are sent primarily to nodes

that are already trusted, so dropping a trust lookup query is less common. A possible

modification to the protocol is to change the trust lookups from a recursive process to

an iterative process. Specifically, Alice queries Cathy for any of Bob’s cookies, Cathy

returns a cookie for Doug, which Alice then uses to query Doug for Bob’s cookies,

iteratively. However, this iterative protocol has higher network overhead, so we do not

consider it further.

4.4.4 Refinements

While the flooding-based scheme we have described is guaranteed to find all paths

between users and has other desirable properties, it is not a complete solution. Flood-

ing queries is an inefficient usage of distributed resources, and as pointed out before,

malicious nodes can erase all information of their misdeeds simply by throwing away

any low valued cookies they receive. We next describe three refinements to the basic

scheme that address these issues.

103

Efficient Searching

The recursive flooding procedure described above does find all cookies that exist for

a given principal. However, it is extremely inefficient, since it visits an exponentially

growing number of nodes at each level. Further, unless the flooding is somehow cur-

tailed, e.g., by using duplicate suppression or by using a time-to-live field in queries,

some searches may circulate in the system forever.

It is obvious to consider using a peer-to-peer search structure, such as a distributed

hash table (DHT) [146, 125], to locate cookies. However, this is not possible since

in NICE because we do not assume the existence of anything more sophisticated than

plain unicast forwarding. NICE is the base platform over which other protocols, such

as Chord, can be implemented. The NICE protocols are much like routing protocols

on the Internet: they cannot assume the existence of routing tables etc., and must be

robust against packet loss and in the case of NICE, against malicious nodes. Thus, we

must employ other mechanisms to make the cookie searches more efficient.

Instead of flooding to all neighbors in the trust graph, nodes forward queries to a

random subset of their neighbors (typically of size 5). However, the resulting search

still increases exponentially at each hop, only with a smaller base! Thus, additionally

we add the following extension to our base protocol: whenever node receives a cookie

from some other node, it also receives a digest of all other cookies at the remote node.

Since, in our implementations, the number of cookies at each node is quite small (typ-

ically around 40 for a 2048 node system), this digest can be encoded using around

less than 1000 bits in a Bloom filter4 [22]. Thus, the storage space required for the

digests are trivial (around 128 bytes), but they allow us to direct the search for specific

cookies with very high precision. The idea of using digests for searches has been used

4Such a filter, with only eight hash functions, would have a false positive rate of 3.16× 10−5.

104

previously, e.g., in lookaround caching [21] and summary caches [48]. It is, in fact,

a base case of probabilistic search using attenuated Bloom filters [22]; in our experi-

ments, we found that we did not need to use full attenuated Bloom filters — only one

level of filters was sufficient. Lastly, each node also keeps a digest of recently executed

searches and uses this digest to suppress duplicate queries.

In our implementation, when choosing nodes to forward to, we always choose

nodes whose digests indicate they have the cookie for which we are searching. How-

ever, it is possible that there are no hits in any digest at a node; in this case, we once

again choose nodes to forward to uniformly at random. However, we only forward to

randomly chosen nodes if the query is within a pre-determined number of hops away

from the query source. Thus, in the final version of the search, a query spreads from

the source, possibly choosing nodes at random, but the flooding is quickly stopped

unless there is a hit in a next-hop digest.

Note that for most applications, the cost of keeping the digests fresh will be small.

With respect to Alice, digests are only kept at nodes that hold a cookie from her. Thus,

when Alice updates her local cookie cache, she need only contact nodes that are one

hop away from her on the trust graph. Rather than force Alice to maintain a list of

nodes who hold her cookies, nodes could periodically contact Alice to refresh their

digests.

Example Before we describe other extensions to the base protocol, we illustrate the

digest-based search procedure with an example (corresponding to Figure 4.3). Alice

wants to use resources Bob has, but does not have a cookie from him. She initiates a

search for a cookie path to Bob. In Figure 4.3-0, we show the initial state of cookies

and digests at each user, e.g., Alice has a cookie of value 0.9 from C, and her digest

from C shows that C has a cookie from D. For this example, we assume the search

105

out-degree is 3, and the random flooding hop limit is 1. Alice first sends a query not

only to nodes with a digest hit (e.g. E), but also to random nodes (e.g. C and D) as

illustrated in Figure 4.3-1. After receiving the query, E finds Bob’s cookie and returns

the query to Alice. WhenC receives the query, he finds that none of his neighbors have

a digest hit for Bob, so does not forward the query further. On the other hand, D does

forward the query to G (Figure 4.3-2) who has a digest hit for Bob, and G returns the

query to Alice with the cookie she received from Bob. Figure 4.3.3 shows two paths

Alice finds, with the strongest path in bold.

Negative Cookies

A major flaw with the original scheme is that low-valued transactions are potentially

not recorded in the system. Consider the following scenario: Eve uses a set of Alice’s

resources, but does not provide the negotiated resources she promised. In our original

scheme, Alice would sign over a low-valued cookie to Eve. Eve would have no incen-

tive to keep this cookie and would promptly discard it, thus erasing any record of her

misdeed.

Instead, Alice creates this cookie and stores it herself. It is in Alice’s interest to

hold on to this cookie; at the very least, she will not trust Eve again as long as she has

this cookie. However, these “negative cookies” can also be used by users who trust

Alice. Suppose Eve next wants to interact with Bob. Before Bob accepts a transaction

with Eve, he can initiate a search for Eve’s negative cookies. This search proceeds

as follows: it follows high trust edges out of Bob and terminates when it reaches a

negative cookie for Eve. In effect, the search returns a list of people whom Bob trusts

who have had negative transactions with Eve in the past. If Bob discovers a sufficient

set of negative cookies for Eve, he can choose to disregard Eve’s credentials, and not go

106

through with her proposed transaction. It is important to note that Bob only initiates

a negative cookie search when Eve produces a sufficient credible set of credentials;

otherwise, Bob is subject to a denial of service attack where he continuously searches

for bad cookies. For efficiency, if Eve presents a cookie directly from Bob, Bob need

only do a local search for negative cookies. For example, if Bob issued Eve a high

valued cookie, and Eve later cheats Bob, Bob would then store a negative cookie for

Eve locally. Afterward, when Eve presents Bob with the original high-valued cookie,

Bob need only check his local cache for a negative cookie about Eve before rejecting

the transaction.

In our implementation, we keep a set of digests for negative cookies as well, but

perform Bloom filter-directed searches for these negative cookies only on neighboring

nodes.

Preference Lists

In order to discover potentially “good” nodes efficiently, each user keeps a preference

list. Intuitively, Alice’s preference list contains nodes that she has yet to contact, but

which have a higher probability of being good than purely random nodes. Nodes

are added to a preference list as follows: suppose Alice conducts a successful cookie

search for Bob, and let P be the cookie path that is discovered between Alice and Bob.

If the transaction with Bob goes well, Alice adds all users in P who have very high

trust value (1.0 in our implementation) to her preference list. Alice knows that these

nodes have a higher probability of being good than purely random nodes, because she

now trusts Bob, and Bob trusts them, creating an implicit trust path. Obviously, only

users for whom Alice does not have transaction records are added to her preference

list.

107

In summary, the NICE distributed trust valuation algorithm works as follows:

Nodes that request resources present their credentials to the resource owner.

Each credential is a signed set of certificates which originate at the re-

source owner. Depending on the set of credentials, the resource owner

may choose to conduct a reference search. The trust ultimately computed

is a function of both the credentials, and of the references.

There are a number of other pragmatic issues pertaining to cookies that we ad-

dress in NICE, e.g., cookie revocations, and cookie time limits. Specifically, cookies

issued from departed nodes no longer have value to the system. Additionally, nodes

may change the behavior over time, so cookies should reflect their most current behav-

ior. To address these concerns, cookies are created with an expiration timestamp, and

nodes periodically flush expired cookies. The length of the timestamp is application-

dependent, and creates a trade off between lookup efficiency versus data freshness.

Finally, if a node loses its private key, the only effect is that useless cookies will persist

in the network until they expire.

4.5 Results

We present simulations from different sets of experiments. In the first set (this sec-

tion), we analyze the scalability and robustness of our inference scheme. In these

experiments, our goal is to understand how well the cookies work, without regard to

how a real system might use cookies. For example, in these experiments, “good” nodes

continually interact with unknown nodes, even when they already know of a large set

of other good nodes. While this assumption helps demonstrate how cookies propagate

and nodes discover each other in the system, in a real system, we expect good nodes

108

to find a set of other nodes they trust and interact with these trusted nodes much more

heavily. We examine this further in section 4.6, we present experiments in which cook-

ies are used to establish trust, but then nodes follow a more conventional pattern, and

try to interact with their trusted peers with higher frequency.

Experiments with the search algorithm In the rest of this section, we present re-

sults from our simulations of the trust inference algorithm proposed in Section 4.4. In

all our results, we use the minimum cookie value as path strength, and use the highest

valued path strength as the inferred trust between users. We have experimented with

other functions as well, and the results from this simple inference function are repre-

sentative. Each search carries with it the minimum acceptable strength, and searches

stop if no cookies of the minimum acceptable value are present at the current node. Us-

ing the minimum cookie value as the strength measure (instead of product of cookie

values) consumes up to an order of magnitude more resources in the network and rep-

resents a worst-case scenario for our schemes.

We divide our results into two parts. First, we analyze the cost of running the path

search algorithm in terms of storage and run time overhead. The storage cost is en-

tirely due to the caching of positive and negative cookies; the run-time overhead comes

from the number of nodes that are visited by each query, and the computation cost for

forwarding a query. The computation cost of forwarding each query is negligible: we

have to generate random numbers, compute eight MD5 hash functions, and check eight

bits in a 1000-bit Bloom filter. In these experiments, the digests were assumed to be

always fresh. We did not simulate updating of the digest, but we believe a periodic

soft-state refreshing algorithm will work adequately. The main overhead of the search

algorithm comes in terms of the number of messages sent and number of nodes vis-

ited. The bandwidth consumed by the searches is proportional to the number of nodes

109

visited, and we report this metric in the results that follow. In the second part of our

results (Section 4.5.2), we show that our trust inference schemes do indeed form robust

cooperative groups, even in large systems with large malicious cliques and with small

fractions of good nodes. We begin with an analysis of the scalability and overhead of

our path searches.

4.5.1 Scalability

In this first set of results, we simulate a stable system consisting of only good users.

Thus, we assume that all users implement the entire search protocol correctly. Be-

fore the simulations begin, we populate the cookie cache of each user with cookies

from other users chosen uniformly at random. Each query starts at a node s chosen

uniformly at random and specifies a search for cookies of another node t chosen uni-

formly at random. In the next section, we will show how long the system takes to

converge starting from no cookies in the system, and how robust groups are formed

when there are malicious users in the system.

In our first experiment, we fix the number of good cookies at each user to 40. The

cookie values are exponentially distributed between [0,1], with a mean of 0.75. Note

that all nodes with constant number of cookies is a worst case for searching perfor-

mance. If cookies were distributed unevenly, for example, with a Zipf distribution,

then the average diameter of the trust graph would reduce, and the lookup times would

decrease [47].

We conducted 500 different searches for cookies of value at least 0.85, where the

search out-degree at each node is set to 5. In Figure 4.4, we plot the average success

5It is not clear how cookie values should be distributed. We have also experimented with uniformly

distributed cookie values with similar results.

110

0

0.2

0.4

0.6

0.8

1

0 1 2 3

Number of random hops

Success Ratio

Fraction of Nodes Visited

Number of nodes=512
Number of nodes=1024
Number of nodes=1512
Number of nodes=2048

Figure 4.4: Success ratio and no. of nodes visited (40 cookies at each node).

ratio and the average fraction of nodes in the system visited by the searches. The

x-axis in the plot corresponds to the number of hops after which random forwards

were not allowed, and the search proceeded only if there was a hit in a Bloom filter.

There are four curves in the figure, each corresponding to a different system size,

ranging from 512 users to 2048 users. From the figure, it is clear that only one hop

of random searching is enough to satisfy the vast majority of queries, even with large

system sizes. It is interesting to note that even when the system size increases, the

average number of nodes visited remain relatively constant. For example, the average

number of nodes visited with 2 hop random searches range from 42.4 (for a 512 node

system) to 36.2 (for the 2048 node system). Thus, the search scheme scales well with

increasing system size. As we show next, the success ratio and the number of nodes

visited depend almost entirely on the number of cookies held at each node, and the

111

0

0.2

0.4

0.6

0.8

1

0 0.03 0.06 0.09 0.12 0.15

Absolute error

search threshold=0.85
search threshold=0.90
search threshold=0.95

Figure 4.5: CDF of errors versus oracle (40 cookies at each node, out-degree set to 5)

with varying thresholds.

out-degree of each search.

In Table 4.1, we fix the number of nodes to 2048 and show the effect of changing

the search out-degree. Each row shows searches corresponding to a different minimum

threshold ranging from 0.8 to 0.95. Each node holds 40 cookies, the average cookie

value is still fixed at 0.7, and the number of random hops is set to 2. In the table, #N

is the average number of nodes visited by a query and #P denotes the number of paths

found on average. As expected, the number of nodes visited increases as the search

threshold decreases, and also as the out-degree increases. In all cases, as the search

threshold increases, the number of distinct paths found decreases. In Table 4.2, we

show the effects of changing the number of cookies at each node. These experiments

were conducted using the same parameters, except the out-degree was fixed at 5. With

112

K=3 K = 5 K = 7 K = 20

thrsh. # N # P # N # P # N # P # N # P

.8 14.5 4.2 37.5 10.7 71.1 20 499.1 132.5

.85 14.6 3.6 36.2 8.7 68.7 16.5 380.6 88.3

.9 14.6 2.9 35.1 6.8 66.0 12.8 222.9 41.5

.95 15.7 2.0 33.2 4.2 55.9 7 89.2 11.2

Table 4.1: Effect of changing out-degree (K):

N,P=nodes, paths traversed

C=20 C=40 C=102

thresh. # N # P # N # P # N # P

0.8 34.4 2.9 37.5 10.7 32.8 23.6

0.85 34.7 2.4 36.2 8.7 37.3 25.4

0.9 34.7 1.9 35.1 6.8 40.8 25.4

0.95 28.6 1.4 33.2 4.2 41.9 21.5

Table 4.2: Effect of changing number of cookies stored (C)

small numbers of cookies and high thresholds, searches do result in no paths being

found. In Table 4.2, the 0.9 and 0.95 threshold searches had 10% and 42% unsuccesful

queries respectively; all other searches returned at least one acceptable path. In our

simulator, when a search returns no acceptable paths, we retry the search once more

with a different random seed. The numbers of nodes visited in the results above include

visits during the retries and account for why the number of nodes visited does not

decrease when the search threshold is increased.

In our system, there is a clear trade-off between how much state individual nodes

store (number of cookies) and the overhead of each search (fraction of nodes visited).

113

Note that unlike in systems such as [2], users in our system do not benefit by storing

fewer cookies since this effectively decreases their own expected trust at other nodes.

There is a built-in incentive for users to store more cookies, which, in turn, increases

search efficiency. Users may choose to store a large number of cookies but not forward

searches on behalf of others. We comment on this issue when we discuss different

models of malicious behavior in the next section. Lastly, we note that it is possible to

further increase the efficiency of the searches by adjusting the two search parameters

— out-degree and number of random hops — based on the threshold and results found.

Such a scheme will minimize the number of nodes visited for “easy” searches (low

search threshold) and find better results for searches with high thresholds. We have

not implemented this extension yet.

The previous two results have shown that the number of cookies and search out-

degree provides an effective mechanism to control the overhead of individual searches.

However, in each case, we have only shown that each search returns a set of results.

It is possible that the searches find paths that are above the search threshold, but are

not the best possible paths. For example, suppose that a search for threshold set to

.85 returns a path with minimum cookie value .90 . While this is an acceptable result,

there may be a better path that the search missed (e.g. with minimum cookie value

.95). In this case, the best path returned had an absolute error of .05. To quantify

the quality of the found paths, we plot the absolute error in the paths returned by our

searches as compared to an optimal search (full flooding). In Figure 4.5, we plot the

CDF of the absolute error for the best path that we find versus the best possible cookie

path given an infinitely knowledgeable oracle as the search threshold is changed. The

higher threshold searches have a smaller possible absolute margin of error, and thus

produce the best paths. However, very high threshold searches are also more likely to

114

produce no results at all.

4.5.2 Robustness

We analyze two components of the system: how long it takes for the system to stabilize

and how well our system holds up against malicious users. Modeling malicious users is

an important open research question: one for which we do not provide any particular

insights in this paper. Instead, we use a relatively simplistic user model with three

different types of users:

• Good users: Good users always implement the entire protocol correctly. If a

good user interacts with another good user, then the cookie value assigned is

always 1.0. Good users do not know the identity of any other good (or otherwise)

users at the beginning of the simulation.

• Regular users: Regular users always implement the entire protocol correctly;

however, when a regular user interacts with another user, transactions result in

cookie value that range exponentially between 0.0 and 1.0, with a mean of 0.7.

Regular users also do not know the identities of any other users when the simu-

lations begin.

• Malicious users: All malicious users form a cooperating clique before the sim-

ulation begins. Specifically, each malicious user always reports implicit trust

(cookie value 1.0) for every other malicious user. Once a malicious user inter-

acts with a non-malicious user, there is a 20% probability that the transaction

is completed faithfully, else the malicious user cheats the other party. The intu-

ition behind this model is that nodes that are consistently malicious, i.e., that fail

transactions 100% of the time, are easily detected and defeated. With malicious

115

nodes that periodically complete transactions, we are considering a slightly more

sophisticated attack model.

At each time step in the simulation, a user (Alice), is chosen uniformly at ran-

dom. Alice selects another user (Bob) from her preference list with whom to initiate

a transaction. If Alice’s preference list is empty, she chooses the user Bob uniformly

at random. This transaction commences if Bob can find at least one path of strength

at least 0.85 between himself and Alice and if Bob cannot locate a negative cookie for

Alice. If no cookie path can be found, i.e., the transaction between Alice and Bob can-

not proceed, Alice tries her transaction with a different user. After two unsuccessful

tries, Alice chooses a random user Carol and the simulator allows a transaction with-

out checking Alice’s credentials. (Recall that in these first set of experiments, good

users only want to form a large good user clique, and do not initiate transactions with

other good users they know of with higher probability). When the cookie cache is full,

cookies are removed from a user’s cookie cache using the following rule: cookies of

value 1.0 are not replaced; other cookies are discarded with uniform probability.

In the first result, we only consider good and regular users (there were 488 regular

users and 24 good users in this experiment). In Figure 4.6, we plot the fraction of

transactions between good users and the fraction of paths between good users. The

x-axis shows the total number of transactions in which at least one party was a good

node. (We choose this measure as the x-axis because in a real system, malicious nodes

can fabricate any number of spurious transactions, and the only transactions that mat-

ter are the ones involving good nodes). The effect of the preference lists is clear from

the plot: even though there is a less than 5% chance of a good node interacting with

another good node, there is a path between any two good node within 1500 transac-

tions. By 2500 total transactions, the majority of which were between good nodes and

116

regular nodes, all good nodes have cookies from all other good nodes, and the robust

cooperative group has formed. This good clique will not be broken unless a good node

turns bad, since 1.0 valued cookies are not flushed from the system.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000

Number of transactions involving good users

cookies between good nodes
paths between good nodes

Figure 4.6: CDF of system initialization with good and regular users.

In the next set of results, we introduce malicious nodes. Figure 4.7 illustrates the

fraction of failed transactions involving good nodes normalized by the total number of

transactions involving good nodes. The curves in the figure show the number of failed

transactions involving good nodes for varying numbers of bad nodes in the system,

averaged over 1000 transaction intervals. For these results, we define failed transac-

tions as those that produce a cookie of value less than 0.2. In the beginning of the

simulation, the number of failed transactions are proportional to the number of bad

users in the system. However, for all bad user populations, the good users identify all

bad users and the number of good-bad transactions approaches zero. The effect of the

117

0

0.1

0.2

0.3

0.4

2000 4000 6000 8000 10000 12000

Number of transactions involving good users

bad users=48
bad users=128
bad users=256

Figure 4.7: Fraction of failed transactions for good users (40 cookies at each node, 512

nodes total).

preference lists is again apparent in this experiment: recall that all bad nodes always

report 1.0 trust for other bad nodes. Thus, bad nodes rapidly fill the preference lists of

good nodes, but are quickly identified as malicious.

In our experiments, good users do not preferentially interact with other good users

(as would be expected in a real system). Instead, if their preference lists are empty,

they pick a random user to interact with. Recall that there are an order of magnitude

more regular users in the system than good users. Thus, good users continue to interact

with regular users and approximately 5% of good user transactions result in failures

(not shown in Figure 4.7). In a deployed system, the fraction of failed transactions

would be much smaller, since the vast majority of transactions initiated by good users

would involve other good users.

118

It is important to note that even with many malicious users, a robust cooperative

group eventually emerges in our system. This property is true, regardless of the num-

ber of positive or negative cookies good users keep, as long as good users can choose

random other users to conduct transactions with and can withstand failed transactions

proportional to the fractions of malicious users. Without random node selection, bad

cliques can stop good users from ever communicating with another good user. How-

ever, as long as bad users cannot stop to whom good users communicate, a cooperative

group emerges. In our simulations, this translates to assuming that the bootstrap node

or topology server is trusted. However, in practice the boot strapping service could be

logically implemented using a more secure system [129]. The good users eventually

find and keep state from other good users, and this state cannot be displaced by mali-

cious users. Obviously, the number of transactions required for good cliques to form

depends on the number of malicious nodes in the system, but good users rapidly find

other good users by using their preference lists. It is possible for a malicious node to

infiltrate good cliques for prolonged periods, but as these bad nodes conduct transac-

tions that fail, the negative cookies will cause these users to be rapidly discarded from

the good clique.

We have varied other parameters in our experiments, and present a summary of our

findings. We experimented with a different malicious node model in which the bad

nodes do not forward queries from non-malicious nodes. The results for this model

were not appreciably different from the model we have used in our above results.

Also, it is not immediately clear how to choose the probability with which transactions

with malicious users fail (recall that bad nodes succeed 20% of the time). If this prob-

ability is low, then malicious users can be identified relatively easily (usually after one

transaction). If this probability is set too high, then in effect, the user is not malicious

119

since it acts much like a regular user. In our experiments, as the bad nodes reduce

the transaction failure probability, the number of transactions required to identify all

bad nodes increases, but the total number of bad transactions remain similar. We have

also experimented with models in which bad users actively publish negative cookies

for good users. As these users are identified as bad by the good users, these negative

cookies are rendered useless. Lastly, we note that our good user model is probably too

simplistic. Even good users may be involved in failed transactions, possibly due to no

fault of their own. However, we believe our results will still hold as long as there is a

definite and marked difference between the behavior of good and bad users.

4.6 Simulations on a Realistic System

As noted above, we have implemented the cookies protocol in a different simulator,

which admits much larger user populations (O(105) users). The goal of the new sim-

ulator is to model a more realistic resource discovery model, attempts to model work

loads, and quantify the effect of our trust based trade limits (Section 4.3.1). We assume

that there is a single bootstrap node that keeps track of the last 100 nodes to join the

system. Each node periodically queries the bootstrap node to obtain a set of neighbors

(if a node already has sufficient neighbors, it does not query the bootstrap node). The

bootstrap node is not part of the trust inference system, and is used only to start the

simulation. Each node in the system starts with a fixed number of “jobs” that they

need completed, and a fixed number of jobs that they can serve for others. Of course,

malicious nodes need not complete any job they accept. After discovering each other,

pairs of nodes conduct a “transaction” to trade a set of jobs.

Node model Each good node maintains the following state:

120

• For each jobs, a status indicating whether that job is complete or not. If com-

pleted, the node remembers which node completed the job. Finally, the node

also maintains state about jobs that have been issued but not completed.

• A fixed set of good cookies and a fixed set of negative cookies. These are used

exactly as described above. Recall that if a node n has a good cookie from node

p, then it also has a digest of the set of bad cookies that p has recorded.

• A preference list, which is a set of nodes to whom the next set of jobs will be

issued.

In the simulator, bad nodes accept jobs but do not complete them with a fixed

probability. We assume that there is a post-verification protocol that allows good nodes

to realize that their jobs were not completed properly.

4.6.1 System Behavior

The simulations proceed as follows: the nodes initially populate their preference list

using random information from the bootstrap server. Each node issues a maximum

number of transaction requests (nominally set at 10 for each simulation) to nodes in

their preference list. Each node maintains its preference list sorted in order of fraction

of successful transactions with the nodes in the list ties are broken using the actual

number of good transactions, and the transactions are issued in this sorted order.

Assume that n requests a transaction to be completed at node p. Each transaction

requests a specific number of jobs to be completed. The number of jobs issued from

node n to p increases exponentially with the number of successful transactions. (We

have also experimented with a linear increase scheme, which we present in the results).

With each transaction request, n tries to present a valid cookie path to p.

121

Node p accepts the request from n as follows: if n cannot present a valid cookie

path, p searches the network for a bad cookie for n. If a bad cookie is found, then p

rejects the transaction request. If a bad cookie is not found,i.e., p has no information

about n good or bad, then p will accept the request with a fixed probability, 50%, else

ask n to retry its request later. If p accepts the request, then it will, initially do one

job for n. Recall that the number of jobs accepted at a node will increase with each

successful transactions, as per the trust-based trading limits.

After p completes a set of jobs for n, it does not accept any other jobs from n

until n performs an equivalent set of jobs for p. In general, the set of jobs accepted is

constrained by the number of available resources at each node, the number of actual

outstanding jobs each node has, etc.

After a transaction completes, n issues a “verification” message. This is how good

nodes realize that malicious nodes have not completed their tasks properly. Once n

finds that it had issued jobs to a bad node (say b), it records a bad cookie for b, and

marks all the previous jobs done by b as failed. Note that allows us to model a relatively

broad notion of a job. For example, jobs could be data blocks stored at other nodes, or

jobs could be computations conducted at other nodes.

All simulation messages have latency between 10-11ms, distributed uniformly at

random. Also, nodes issue the verification message a random amount of time after the

transaction has occurred.

Preference List updates The efficiency of this system (like real systems) depends

on which nodes are contacted in what order when node n wants to place jobs. In the

simulator, this is reflected in the way the preference lists are maintained. When node

n issues a bad cookie for any node b, n takes b out of its preference list. If n issues p a

good cookie, then p gives n a copy of its preference list; n integrates this information

122

into its own preference list as follows. Initially, all new nodes in p’s preference list are

assigned the same trust (and transaction success parameters) as p. Then, these nodes

replace existing nodes with lower trust value in n’s preference list.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1 2 3 4 5 6 7 8

F
ai

le
d

Jo
bs

 p
er

 0
.1

s
In

te
rv

al

Simulator Time

0 Malicious Nodes
1000 Malicious Nodes
2000 Malicious Nodes

10000 Malicious Nodes
20000 Malicious Nodes

Figure 4.8: Failed jobs over time; 80 cookies

4.6.2 Simulation Results

Given our system description, there are two key metrics that we chose to measure in

the simulation. Specifically, we consider how quickly good nodes place all of their

jobs, i.e. completion time, and how many jobs are lost to bad nodes in the process, i.e.

loss rate. Then we show results where we vary the number of malicious nodes relative

to “good” nodes, and we vary the amount of state each node is allowed to hold. In all

experiments, transactions only involving malicious users are disregarded.

123

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

C
D

F
 o

f J
ob

 C
om

pl
et

io
n

T
im

es

Time

0 Malicious Nodes
1000 Malicious Nodes
2000 Malicious Nodes

10000 Malicious Nodes
20000 Malicious Nodes

Figure 4.9: CDF of job completion times; 80 cookies

Number of Malicious Nodes In this experiment, we fix the number of good users (as

defined in Section 6.5) at 1000 nodes. Each node carries state for 80 cookies, and joins

the system distributed uniformly at random during the first second of the simulation.

Each node has 100 jobs to place, and capacity to serve 100 jobs. A node stays in the

system until it can place all of its jobs successfully; nodes time out after 30 seconds of

inactivity. In all experiments, less than 1% of nodes time out. Malicious users fail jobs

with 80% probability.

Figure 4.8 illustrates the number of failed jobs over time, as measured in 0.1 second

intervals. As expected, the number of failed jobs initially increases as the ratio of

malicious to good nodes increases. However, over time as good nodes discover each

other, the number of failed jobs approaches zero. Specifically, in the case with 20,000

malicious nodes, i.e. a 20-to-1 ratio of malicious to good nodes, good nodes are still

124

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 1 2 3 4 5

Jo
bs

 p
er

 0
.1

s
In

te
rv

al

Time

Failed: 0 Malicious Nodes
Successes: 0 Malicious Nodes
Failed: 20000 Malicious Nodes

Successes: 20000 Malicious Nodes

Figure 4.10: Succeed vs. Failed Jobs; 80 cookies

able to make progress as shown in Figure 4.10. By simulation time 3 seconds, over

62% of the total jobs in the system have been placed (Figure 4.9).

Note that in Figure 4.10, the number of successful jobs also reduces over time

(unlike in Figure 4.7 from Section 6.5). This is because, in these simulations, good

nodes leave the system after all of their jobs are satisfied. Since new nodes do not join,

after a few simulation seconds, almost all the good jobs in the system are done (unlike

in the previous case, where there was an unbounded number of jobs in the system).

We believe that a system that incorporated continuous node arrivals and departures, as

would be expected in a practical system, could result in better average performance.

Amount of State Per Node Even in this more realistic system (in which good nodes

visit each other preferentially), the number of cookies a node keeps is important. We

125

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F
 o

f F
ai

le
d

Jo
bs

Simuation Time

1 Cookie
10 Cookies

100 Cookies
200 Cookies

Figure 4.11: Cumulative distribution of failed jobs; 2000 malicious nodes

have experimented with varying the amount of cookie state each node keeps. In this

experiment, 1000 good nodes join uniformly at random within the first second of sim-

ulation time. The number of malicious nodes is fixed at 2000, and the amount of state

varies. As above, each node has 100 jobs to place, and capacity for 100 jobs. Malicious

users fail jobs with 80% probability.

Figure 4.11 depicts the cumulative distribution of failed job placements over time.

As expected, the number of failed jobs is initially high, but reduces as time progresses

and as cookies are traded throughout the system. Figure 4.12 represents a count per 0.1

second interval of failed job placements over time. Note that as the number of cookies

increase, the completion times and the number of failed jobs decrease. Observe the

benefit from doubling the number of cookies from 100 to 200 is minimal, and thus a

node can achieve practically full benefit from the cookie protocol from storing merely

126

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2 4 6 8 10

F
ai

le
d

Jo
bs

 p
er

 0
.1

s
In

te
rv

al

Simulator Time

1 Cookie
10 Cookies

100 Cookies
200 Cookies

Figure 4.12: Failed jobs over time; 2000 malicious nodes

100 cookies. Figure 4.13 shows the cumulative distribution of completed jobs. Note

that nodes place over 90% of their jobs in the first 7 seconds in all experiments.

4.7 Summary and Conclusions

The main contribution of this chapter is a low overhead trust information storage and

search algorithm which is used to implement a range of trust inference and pricing

policies. Our scheme is unique in that the search and inference performance for the

whole group increases as users store more information, and information is explicitly

beneficial for the storer’s cause. We have presented a scalability study of our algo-

rithms, and have shown that our technique is robust against malicious users. We have

experimented with networks with over 20,000 nodes. Our results show that the pro-

127

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20

C
D

F
 o

f C
om

pl
et

ed
 J

ob
s

Simulator Time

1 Cookie
10 Cookies

100 Cookies
200 Cookies

Figure 4.13: CDF of completed jobs; 2000 malicious nodes

tocol presented here scales to networks of this size, however, it is not clear that the

protocol presented here will be efficient on systems an order of magnitude larger. It

is likely that in very large systems, a fundamentally more sophisticated solution, e.g.

based upon a DHT [146, 125] or random walks [104] would be preferred. We should

note that structures such as a DHT implicitly assume that all participants are trustwor-

thy, and we expect a solution such as ours will be required as the basis for booting a

trusted DHT. We also believe techniques presented in this chapter are a crucial piece

for building large peer-to-peer systems for deployment over the Internet.

128

Chapter 5

Resource Discovery Framework: Sidecar

5.1 Introduction

Internet measurement is key to optimizing performance, building overlay topologies,

developing improved transport protocols, understanding the influence of network pol-

icy, and many other research tasks [42]. Yet the scope and detail of network measure-

ment is limited more by the potential for soliciting abuse reports and administrative

headache than by the bandwidth required to measure every interesting property [141].

Traffic designed to measure the network is often out-of-the-ordinary, interpreted by

intrusion detection systems (IDSs) as anomalous or as attempts to exploit unknown

vulnerabilities. To make a network measurement “safe,” not just for the network but

also to avoid abuse reports, requires techniques beyond those of Scriptroute [142]:

it requires a fundamental shift in the design of network measurement probes and re-

sponses.

We present a measurement platform for reduced intrusiveness called TCP Side-

car. Sidecar’s main insight is that soliciting abuse reports and triggering IDSs can be

avoided by injecting carefully-crafted probes into externally-generated, non-intrusive

network traffic. Where typical measurement tools select which hosts to probe and in

129

what order, Sidecar does not control the source, destination, or the exact time of the

measurement. Much like a sidecar attaches to a motorcycle, TCP Sidecar attaches to a

TCP connection and is just “along for the ride.” The Sidecar is also a container: it can

carry various measurement techniques for discovering different network properties.

In this chapter, we describe Sidecar-based topology inference, round-trip time

measurement, and bottleneck location. We show how Sidecar obtains measurements,

through network address translators (NATs) and firewalls, unavailable to traditional

measurement techniques. Also, we describe our experience with Sidecar on Planet-

Lab. In Chapter 6, we describe Passenger [132], a Sidecar-based tool that makes use

of the IP record route option for topology discovery.

This chapter is organized as follows. In Section 5.2, we describe the Sidecar plat-

form and API. We present our experience from running Sidecar on PlanetLab in Sec-

tion 5.3 and two examples of Sidecar-based tools in Section 5.4. Last, we describe our

plans for future work in Section 7.11.

5.2 Sidecar Design

Sidecar (Figure 5.1) is a platform that supports transparently injecting measurement

into TCP streams. Probes consist of acknowledgments and replayed data segments,

carefully crafted not to interfere with the ongoing TCP connection. Sidecar requires

no modification to end-points, requires no firewall rules (unlike Sting [126]), and can

run at either end-point of a stream or even in a network middle box. Sidecar’s only

requirement is that it be on both the forward and reverse paths of a connection. Sidecar

probes require an external source of TCP traffic, but the characteristics of the applica-

tion being instrumented matter little.

130

Conn. 1

ESTAB

547 bytes
recorded

Conn. N

SYNSENT

0 bytes
recorded

Conn. 2

TIMEWAIT

3K bytes
recorded

libpcap raw socket

Network

Sidecar

...

Artrat

packet_send()

Sideping

Event:
new connection

Figure 5.1: Sidecar is a platform for unobtrusive measurements that provides an event-

driven interface and connection tracking to higher-level tools, e.g., artrat, sideping.

5.2.1 Unobtrusive Probing

Sidecar probes are TCP packets that look like retransmitted data. Upon receiving

retransmitted data, TCP receivers send a duplicate ACK because the original ACK

could have been lost (Figure 5.3). TCP senders ignore single duplicate ACKs because

they could be caused by delays (Figure 5.2) or reordering in the network. Sidecar

records application data passively so that segments can be retransmitted accurately

(Figure 5.4).1 Because packet loss and duplication are expected in TCP, IDSs are

unlikely to generate alerts from Sidecar probes. Thus, Sidecar probes solicit responses

from end-hosts without affecting applications or alerting IDSs.

Because Sidecar probes seamlessly attach and follow application streams, they can

reach places unsolicited probes cannot. For example, if a Sidecar-enabled tool in-

strumented web server traffic, Sidecar probes could follow web connections from the

server back to the corresponding web clients, even if they were behind firewalls or

1Paxson [111] notes that retransmitted data can change the data stream sent if the original and re-

transmitted data are not consistent.

131

NATs.

The size of the probe can be varied by changing the amount of traffic replayed,

only limited by the connection MTU and the amount of data recorded. Probes can be

sent even after the connection has closed by replaying the final FIN-ACK packet, as

long as the receiver is in the TIME-WAIT state. The last is possible because the final

ACK of the three-way close might have been lost, so replaying the FIN-ACK causes a

retransmission of the final ACK.

Sender Receiver

Data

ACK

DUP ACK

Delayed or
Duplicate Data

Figure 5.2: Sender incorrectly assumes (shaded region) that duplicate ACKs are from

delayed, reordered, or duplicated packets.

Sender Receiver

Data

ACK

ACK

ReXmit Data

Dropped

Figure 5.3: Receiver incorrectly assumes (shaded region) that probes are valid retrans-

missions from sender due to lost ACK.

Typically, a Sidecar-enabled tool would further modify probes. For example, one

could implement a Sidecar traceroute-like [70] topology discovery tool by setting the

132

Sender Sidecar Receiver

Data

ACK

DUP ACK

Dup Data

Figure 5.4: Reality: Sidecar probes are replayed data packet that generate duplicate

ACKs. Probes are transparent to both sender and receiver applications.

IP TTL field of the Sidecar probe to 1, and then incrementing until an ACK was re-

ceived from the end-host. With Sidecar running on a web server, this tool would obtain

the path back to any client without out-of-stream packets.2

TTL-limited Sidecar probes can also detect NATs. If a probe is sent to IP address

A at TTL=t, but the response is an ICMP time-exceeded message with source address

A, we can infer that there is a NAT at hop t. We can then continue to increase the TTL

to find the actual distance to the end-host, effectively probing behind the NAT. Pas-

senger [132] is a Sidecar-enabled topology discovery tool that combines TTL-limited

traceroute data with data from the IP record route option. We present two further

examples of Sidecar tools in the Section 5.4.

5.2.2 Sidecar API

The Sidecar API (Figure 5.1) provides connection tracking, probe identification, round

trip time estimation as well as bandwidth and memory usage limits. The Sidecar tools

are event-driven applications that receive event notifications such as new connections,

2Discovering the topology between server and web clients is precisely the measurement by Padman-

abhan et al. [107].

133

incoming and outgoing probes. The Sidecar initialization function takes a libpcap [88]

filter string, e.g., “host www.google.com and port 80”, as a parameter, and ignores

events that do not match the filter. To construct packets for retransmissions, Sidecar

tracks state for each connection, including sequence numbers and the last 3000 bytes

(two full standard Ethernet packets) of application data in both directions. Sidecar au-

tomatically matches probes to their sent and received libpcap timestamps for increased

accuracy over gettimeofday() [140]. Sidecar differentiates probes from legitimate traf-

fic by changing the probe’s IP identifier field.

5.3 Sidecar on PlanetLab

In this section, we discuss the lessons learned by running Sidecar on PlanetLab. We

divide these lessons into two categories: problems we expected that turned out to be

non-issues, and problems we did not expect.

5.3.1 Non-Issues

No abuse complaints from embedded probes. We run a Sidecar-based topology

discovery tool, Passenger [132], for seven days on all traffic generated by the CoDeeN [152]

web-proxy project. CoDeeN is a content distribution network hosted on PlanetLab that

supports approximately 1 millions requests per day [40]. Of the 13,447,011 unique IP

addresses, we ran a Sidecar based traceroute scan back to each client, using the algo-

rithm described in Section 5.2. No abuse reports were generated from our probes.

PlanetLab VNET worked with Sidecar. PlanetLab implements a connection track-

ing and traffic isolation system called VNET [68] to prevent researchers from interfer-

ing with each other. With VNET, all connections are owned by a specific slice, and

134

slices can only read and write raw packets that come from connections that they own.

It was not immediately clear that Sidecar would be compatible with VNET, because

Sidecar assumes that processes in the same slice can write to each other’s connections

and slices can write packets to sockets after they have gone to the timewait state. It is a

measure of the success of the VNET design that it was able to accommodate Sidecar.

5.3.2 Unanticipated Issues

Clocks changed and went back-in-time. PlanetLab machines run on a variety of

hardware and loads, causing variable clocks and inconsistent measurements. As part

of our future work, we are adding a periodic sanity check to Sidecar to compare the

elapsed time to the elapsed processor cycles as returned by the RDTSC instruction. In

this way, Sidecar can notify a Sidecar tool that significant clock skew has occurred,

and to adapt accordingly, potentially discarding timing data.

Libpcap on PlanetLab drops and reorders packets. Packets drops and reorder-

ing occur more frequently on PlanetLab than our development machines. Particularly

problematic was that the final ACK of the three-way-handshake would appear before

the SYN-ACK packet. As a result, Sidecar’s connection tracking had to be rewritten

to be more resilient to these issues.

Firewalls unset DF. In an attempt to reduce the number of packets traversing libp-

cap, we decided to mark probe packets for which the sent timestamp was unimportant

(those that are merely payload intended to cause delay, as in RPT [66]) to separate

them from important traffic in the libpcap filter. We marked uninteresting packets by

unsetting the Don’t Fragment (DF) bit in the IP header, and adjusted our libpcap filter

appropriately However, firewalls around some PlanetLab nodes unset the DF bit on

135

incoming packets, foiling our scheme.

IO system calls occasionally took seconds. We saw intermittent multi-second de-

lays when running Sidecar. Using strace -T, we found that some open() and write()

system calls would take seconds to complete. Because the problem was intermittent,

we could not isolate the cause.

PlanetLab web servers don’t implement persistent connections. RedHat Fedora

Core 2, PlanetLab’s base distribution, ships with persistent web connections disabled,

despite RFC2616’s recommendation that they should be enabled. Many of the re-

sults in Section 5.4 used connections from one PlanetLab machine to the web server

of another PlanetLab machine as the source of external traffic. The lack of persis-

tent connections shortened connection time so the majority of PlanetLab-to-PlanetLab

measurements relied on the post-connection FIN-ACK Sidecar probes as described

above.

Sidecar required resource limits Because Sidecar probes are triggered in response

to external traffic, and the rate of external traffic is not under Sidecar’s control, it

quickly became necessary to implement resource metering. Sidecar implements an in-

ternal rate limiting scheme on all outgoing probes and monitors the size of the outgoing

queue. If the queue size exceeds a threshold value, Sidecar ignores new connections

until the queue falls below the threshold. In this way, Sidecar tools need not be exposed

to the underlying details of the connection tracking, traffic bursts, or rate limiting.

Generate artificial traffic carefully Sidecar is unobtrusive because it attaches to

pre-existing traffic sources. However, for testing or probing specific portions of the

network, it is sometimes useful to artificially generate a seemingly legitimate traffic

136

source for Sidecar. In one experiment [132], we created a custom web client to visit a

list of 160,000 websites from each PlanetLab node and mimic the presumed innocuous

behavior of a web crawler. For each web server, the custom web client connected and

performed a full HTTP session while Sidecar attached to the traffic stream to send

Sidecar probes.

This experiment generated ten abuse reports, but surprisingly from the web traf-

fic, not the Sidecar probes. The reports were not triggered by automated intrusion

detection systems, but apparently by administrators noting the similarity of PlanetLab

machine names after manual inspection of HTTP access logs entries. We failed to an-

ticipate the prevalence of virtual hosting and the need to randomize the list of websites.

The first caused individual clients to query a single server repeatedly, increasing the

number of log entries, and the second caused PlanetLab clients to accidentally syn-

chronize and query the same server simultaneously, decreasing the time between log

entries. These issues were exacerbated due to a coding error where the User-agent

string in the HTTP requests had been reset to a default “Mozilla”-like string. We be-

lieve that if the correct User-agent string had been in place, i.e., one pointing to an

explanatory web page with contact information, fewer abuse reports would have been

directed to PlanetLab.

We plan to explore new less intrusive, artificial traffic generation techniques for

future Sidecar experiments.

5.4 Sidecar Tools

We present two examples of reduced intrusiveness Sidecar-based tools that suggest

the generality of the platform. The first tool, sideping, provides accurate round trip

137

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 0 2 4 6 8 10

R
T

T
 (

m
s)

Time(s)

righthand.eecs.harvard.edu
planetlab1.mnl.cs.sunysb.edu

Figure 5.5: Sideping RTT measurements from UMD to two ICMP echo filtered Plan-

etLab nodes.

measurements with increased accuracy. The second tool, artrat, performs bottleneck

location at the receiving end of a connection. As Sidecar modules, both require a sep-

arate source of connections, though we use a driver that creates new connections on

demand for debugging. In other work, we describe Passenger [132], a Sidecar-enabled

tool that combines traceroute probes with the record route IP option for topology dis-

covery.

138

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 12 14 16 18 20

C
D

F

RTT (ms)

ICMP Echo
scping

Figure 5.6: Sideping RTTs vs ICMP Echo: Difference exposes NAT + wireless net-

work.

5.4.1 sideping: Round Trip Time Estimator

Sideping estimates network latency by measuring the round trip time of Sidecar probes

in a TCP connection. Although latency is an unsophisticated measurement, the exten-

sive use of the all-pairs PlanetLab ping [115] data set demonstrates its importance.

Sideping seeks to avoid over- and underestimation of round trip times. Tools like

ping can overestimate RTTs because they assume that the probe’s sent time is close to

the sendmsg() call. By contrast, Sidecar records the timestamp from libpcap for the

time the probe was given to the network interface device. Rate limiting means that

139

the probe can reach the interface well after the application asked it to be sent. Ping

can also underestimate RTT when probing a host behind a NAT. Because sideping

can follow TCP connections to their end-points, researchers can gain insight into net-

work dynamics behind NATs. Compared to TCP’s internal RTT estimation protocol,

sideping does not inflate RTTs by including delayed ACK time.

Figure 5.5 shows sideping collecting previously-unavailable RTT measurements

from two PlanetLab nodes that filter ICMP echo packets. Figure 5.6 shows the dif-

ference between ICMP echo and sideping RTT measurements traversing a NAT to a

wireless network. The ICMP echo reply packets return with a larger TTL than the

sideping responses. The difference between the two techniques, 0.797 ms on average,

is extra delay from the wireless network.

5.4.2 artrat: Receiver-side bottleneck detection

Artrat3 is a Sidecar-based tool that attempts to locate local bottlenecks, from the re-

ceiver’s perspective. This information could be used to decide whether local net-

work resources were sufficiently-provisioned or if they should be upgraded. Although

tools [9, 66] exist to perform bottleneck location by instrumenting the sender, we be-

lieve we are the first to focus on the perspective of the receiver. We believe that this

tool will be of use to PlanetLab researchers who are concerned with local bandwidth

conditions during their experiments.

Artrat correlates the congestion delay in the connection with the queuing delay at

local routers. Sidecar reports any router whose queuing delay correlates over time with

the congestion delay as a suspected bottleneck. Similar to TCP Vegas [28], we mea-

sure the congestion delay as the difference between the current RTT and the baseline

3Artrat: Active Receiver TCP Rate Analysis Tool

140

(minimum) RTT.

To measure the queuing delay at routers, artrat first discovers the router, a, five

hops4 into the network using a TTL limited probe. Then, artrat periodically sends

ICMP echo probes with the IP timestamp option [116] to router a, and parses the

response (Figure 5.7). The IP timestamp option records the time at each router in

milliseconds and (by RFC792) the ICMP echo response packet has the same options

payload as the echo request. In this way, artrat learns the local time of each router

along the outgoing path to a, and, most importantly, of each router on the path from

a back to the receiver. Similar to our definition of congestion delay above, we define

the queuing delay between two routers as difference between the current jitter and the

minimum observed jitter. If we label the IP option timestamps for the jth probe as

S1,j . . . S9,j and call S0,j and S10,j the send and received times for the ICMP probe j,

we can calculate the queuing delay, qi,j , between router i and i+ 1 as computed by the

jth probe as:
qi,j = Si+1,j − Si,j − mink(Si+1,k − Si,k) (5.1)

Then we compute the correlation between the congestion delay and qi,j for all

routers i, and output the i → i + 1 link with the highest correlation as the likely

bottleneck.

We ran artrat on a local network testbed to test the scheme. The testbed consisted of

a client connected with a 10Mbps Ethernet card to a 100Mbps network. We ran artrat

while the network was idle (Figure 5.8) and while downloading a 20MB file (Figure

5.9). When the network was idle, artrat found no significant queuing delay. While the

4 Five hops into the network was chosen because the IP header limits the number of recorded times-

tamps to nine. If the local path is symmetric, five hops is the maximum distance the probe can travel

away from the receiver so that the return path does not exhaust the IP option array.

141

R 1 2 3 4 5 S...

T
im

e

Data
ICMP

Correlated Queuing
at TTL=2

Figure 5.7: Overview: Artrat correlates congestion and queuing delays to do receiver-

side bottleneck location (example: bottleneck from S to R at

TTL=2).

network was in use, artrat successfully found queuing delay on the inbound portion of

the 10Mbps link (labeled “1→ R” in Figure 5.9).

The coefficient of correlation between the congestion delay and routing delay at

router 1 in Figure 5.9 is 0.24. Although this is low, the second highest coefficient of

correlation was 0.072, so artrat successfully found the 10Mbps link as the bottleneck.

This correlation analysis simply compared the ith ICMP probe with the ith Sidecar

probe, ignoring timing information and dropped probes. Implementing robust time-

series analysis techniques is future work, but the technique shows promise.

Artrat makes two assumptions that must be validated before use. First, due to the

baseline measurements, this technique is sensitive to clock skew, both locally and at

routers. Thus, artrat must periodically compare the time elapsed on all clocks against

some external source, like the RDTSC instruction or a remote NTP server, using the

techniques of Moon et al. [102]. Second, artrat requires some symmetry in local rout-

ing. Specifically, artrat can only discover bottlenecks on the path of the returning

142

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5

D
el

ay
 (

m
s)

Time(s)

Cong. Delay
R->1 Delay
1->2 Delay
2->3 Delay
3->4 Delay
4->3 Delay
3->2 Delay
2->1 Delay
1->R Delay

Figure 5.8: Artrat Experiment: Idle connection: no bottlenecks.

ICMP probe. It is the subject of future work to integrate artrat with topology-aware

tools to verify the symmetric nearby network assumption (perhaps using remote tracer-

oute servers as in Rocketfuel [139] or another service).

While one could create a version of non-Sidecar enabled artrat, the Sidecar version

benefits from increased accuracy in RTT measurements (Section 5.4.1) and already

written connection tracking libraries.

143

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5

D
el

ay
 (

m
s)

Time(s)

Cong. Delay
1->R Delay

Figure 5.9: Artrat Experiment: Data Transfer: bottleneck at 1→R, i.e., 10Mbps link.

(Data labels as in Figure 5.8)

5.5 Conclusion and Future Work

TCP Sidecar provides a platform for non-intrusive network measurements by inject-

ing probes into external sources of traffic. One potential source of external traffic

is PlanetLab, which supports many high volume, publicly accessible services, e.g.,

CoDeeN [152], OpenDHT [122], Meridian [156], and CoralCDN [56]. Many of

these services perform their own measurements, and might benefit from less intrusive

Sidecar-based approaches. This creates an interesting symbiotic relationship between

measurement studies and PlanetLab hosted services.

144

In our future work, we plan to complete a large-scale Sidecar-based measurement

study. Our current work is in concert with the CoDeeN project, but we plan to expand

to other PlanetLab services to avoid host selection bias. We also plan to better docu-

ment the Sidecar API so that other researchers might benefit from our work. Sidecar

is available for download at http://www.cs.umd.edu/projects/sidecar.

145

http://www.cs.umd.edu/projects/sidecar

Chapter 6

Resource Discovery With Record Route

6.1 Introduction

Complete and accurate maps of the Internet backbone topology can help researchers

and network administrators understand and improve its design. Good maps are un-

available, however, and while some of the reason for this may be social—publishing

accurate information is not obviously in a network operator’s interest—various re-

search projects [38, 61, 109, 138] have shown that information helpful for research [161,

14] can be collected through traceroute-like probing.

Unfortunately, the increasing use of MPLS, the size of the network, filtering of

traffic directed toward router addresses, and fine-grained multi-path routing add intol-

erable error to traceroute-based studies. Further, large-scale traceroute-based studies

typically yield abuse reports from destination hosts behind intrusion detection systems

that interpret an incoming traceroute as a port-scan or intrusion attempt [140].

We present a topology discovery tool, Passenger, that revisits IP’s record route

option to yield more accurate (corroborated) path information, and Sidecar, a system

for embedding probes within TCP connections to reduce the intrusiveness of network

probing.

146

With Passenger, we find that the record route option has been prematurely dis-

missed as a useful tool for network topology discovery: specifically, that its noted lim-

itations are not severe. Its first limitation is that only nine hops of a trace are recorded.

PlanetLab [114] allows us to deploy our tools within nine hops of 87–98% of observed

addresses (Section 6.5); distant portions of the network are poorly sampled by tracer-

oute anyway [84]. Second, routers may forward packets with options at lower priority,

but we are interested in topology, not performance. Third, firewalls may block packets

with record route, yet firewalls also often block traceroute, so little is lost. Finally,

intrusion detection systems are likely to report IP options as exceptional events; we

find that TTL-limited record route packets can keep destination hosts from seeing and

objecting to IP options.

Our challenge is not in these obvious limitations: it is matching traceroute-observed

addresses with record-route-observed addresses to infer a path that is more correct

and complete than either method can collect alone. This is challenging first because

traceroute and record route observe distinct addresses with no overlap. We have also

observed routers that (a) insert record route entries without decrementing TTL, (b) in-

sert a record route entry when expiring a packet (most do not), (c) insert record route

entries only sometimes, perhaps not when under load, and (d) do not insert record

route entries at all. This diversity of implementation and configuration makes aligning

traceroute and record route paths a daunting task.

Correct alignment of the addresses returned by both schemes is an instance of alias

resolution [109, 136, 64, 80]: determining which IP addresses belong to the same

router. This means that we can verify the alignment of paths using Rocketfuel’s ally

tool [138]: when the IP addresses discovered respond to direct probing and when they

do not respond, we can discover new aliases not found by other tools. This ability to

147

find aliases for unresponsive routers is a significant step in improving the correctness

of measured network topologies.

With Sidecar, we show how to embed Passenger’s record route and TTL-limited

probes within TCP connections to collect path information with limited intrusive-

ness. Embedding within TCP requires tracking connection state and disambiguat-

ing acknowledgments of probe TCP packets from those of the normal transfer. Al-

though passive observation of TCP behavior and timing has been useful for measure-

ment [83, 107, 160, 16], and traceroute can be embedded with paratrace [76], we

believe this is the first demonstration of the feasibility of running traceroute-like prob-

ing within TCP connections to pass through firewalls and avoid false accusation by

intrusion detection systems.

This chapter is organized as follows. In Section 7.2, we describe the problem

of aligning record route with traceroute. We present Sidecar in Section 6.3. In Sec-

tion 6.4, we describe Passenger and our data collection methodology with the results in

Section 6.5. We then conclude and describe our plans for future work in Section 7.11.

6.2 Mapping with RR

6.2.1 Conventional Wisdom

In this section, we describe why the record route (RR) IP option has been unnecessarily

discounted as a topology discovery technique and describe why its limitations are not

flaws.

As an IP packet with the record route option traverses a router, the router enters its

address into an array at a given offset in the IP header and updates the offset. Because

space in the IP header is limited, the record route array can hold at most nine addresses.

148

Paths through the Internet are often longer than nine hops, so much of the network

would be undiscovered by record route. Fortunately, we can send record route packets

from PlanetLab [114]. In Section 6.5, we find that at least 87% of addresses in our

survey are reachable in nine hops from at least one PlanetLab node.

IP options increase the chance of delay, discard, or alarm at intrusion detection

systems (IDSs). Delay matters little for topology discovery. Discard is common at

firewalls for traceroute packets and record route is not much different. Fonseca et

al. [55] found that 46% the paths between PlanetLab hosts drop packets with RR set but

that only 8% of those paths are blocked in transit networks. We believe that firewalls

and IDSs are typically close to the end-hosts that they protect. To reduce the likelihood

of intrusion alarm without sacrificing data from the core of the network, we prevent RR

probes from reaching hosts by limiting the TTL. We set probe TTLs to the minimum

of the hop count to the end host minus three or eleven, because more information in

record route is very unlikely after eleven hops.

6.2.2 Simple Topology Discovery

We first describe the process of discovering network topology using record route when

the network is simple: all routers always decrement TTL and append to the record

route array when not expiring the packet. The diversity of router implementation and

configuration means that this model is too simple to be directly applied, but it remains

useful as an introduction. In the next subsection, we dive into this complexity.

The addresses discovered by traceroute and by record route do not overlap. RR

records the address of the outgoing interface onto which the packet is sent or the

router’s designated “loopback” address. By contrast, the “time-exceeded” messages

solicited by the TTL-limited probes of traceroute [70], by convention, come from the

149

incoming interface where the packet was received.

In Figure 6.1, we discover the incoming and outgoing interfaces of each router by

sending probes with the RR option and different TTLs. We retrieve the RR array from

the header of the packet encapsulated in the ICMP time exceeded message. (The IP

header of the response does not include record route.) The ith address of the RR array

is an alias for the router that sends the ICMP time exceeded message for TTL=i.

T
im

e

Probe TTL=1

ICMP src=192.168.0.1

RR={} Aliases
for

Router 1

192.168.0.1
172.16.0.4 128.8.128.8

172.16.0.5Source

Router 1 Router 2

Probe TTL=2

ICMP src=172.16.0.5 RR={172.16.0.4}

128.8.128.9
x.x.x.x

Router 3

Probe TTL=3

ICMP src=128.8.128.9 RR={172.16.0.4,128.8.128.8}

Aliases
for

Router 2

Figure 6.1: Alias resolution with TTL-limited record route.

Load-balancing can cause incorrect topology inference when only traceroute is

used. When packets from the same traceroute traverse multiple paths, especially of

different lengths, incorrect edges can be inferred (Figure 6.2). The traceroute-inferred

network incorrectly links router B to router E because the third probe took a differ-

ent path. However, the first entry in the RR array in the third probe changed from

150

A2 to A3, exposing the new path and providing feedback that more probes are neces-

sary to discover the entire topology. With record route, the route changes problematic

for traceroute become a benefit because they permit the discovery of more topology

information.

6.2.3 Router Behavior Inference

Not every router has the same record route behavior. Specifically, with each addi-

tional TTL, our probes may record zero, one, or many new record route addresses.

In this section, we list six distinct router implementations and describe the rules we

use to classify individual routers into their respective implementations. By classifying

routers, we are able to match traceroute and record route addresses on the same router,

thus enabling alias resolution and topology discovery.

The router implementation variants we have discovered are:

Type A routers are common: they record the outgoing interface address only if that

interface transmits the packet (not when it expires at the router) as described

in the simplified examples above. The prevalence of this behavior is consistent

with belonging to Cisco routers.

Type B routers are less common: they record the outgoing interface address the packet

would have taken even when the packet expires at that router. Because we infer

Type B behavior within Abilene [3], we believe it to be consistent with Juniper

routers.

Hidden routers never decrement TTL, but always mark record route. Such routers are

discovered only by record route probing. We believe these routers are typically

part of an MPLS tunnel where decrementing TTL is considered optional.

151

Type N routers never mark record route packets but always decrement TTL. We be-

lieve this to be a configurable option.

Lazy routers do record the outgoing interface, but decrement the TTL only of packets

lacking the record route option. We speculate that slow-path processing omits

the TTL-decrementing step.1

Flaky routers sometimes, but not always, append record route entries. We speculate

that they omit processing when under load.

As further diversity, some router configurations appear to not process RR options

if the outgoing interface is part of an MPLS tunnel.

The variety of router types make router classification ambiguous. Because differ-

ent topologies and router implementations can generate the same trace (Figure 7.4),

a router may be misclassified, leading to mismatched addresses. Thus, “128.8.128.8”

may be an alias for the router with address “128.8.128.9” (Figure 7.4, top topology)

or an alias for a hidden router that does not appear in the traceroute data (Figure 7.4,

bottom topology).

We describe the rules we use to classify routers from the available data.2 In these

rules, the current router originated the ICMP response we are attempting to classify,

while previous and next refer to the routers one TTL closer and further. For clarity, we

classify probes based on their RR delta: how many new RR entries were added since

the previous TTL.

We evaluate the resulting inferences in Section 6.5.

1We have not confirmed that the TTL is decremented if the record route list is full. As such, we

consider this a potential flaw in router software.

2Router OS fingerprinting, or similar additional probing may yield a more accurate classification;

we avoided this because router addresses are often not routable.

152

A-to-B transition If a probe’s delta is two, we classify the current router as Type B

and the previous router Type A. The first new address belongs to the previous

Type A, which it did not place in the previous TTL; the second new address

belongs to the current Type B.

Types A and B transitivity If a probe’s delta is one and the previous router is Type

A or B, then we classify the current router as the same. Unfortunately, the transi-

tion from a type B router to another type B router in one hop is indistinguishable

from a B-to-Hidden-to-A transition. We use the off-by-one rule to disambiguate.

Off-by-one Because address prefixes are assigned to networks, addresses that are nu-

merically off-by-one are more likely to represent interfaces at either end of a

point-to-point link (assigned a /31 prefix) than interfaces on the same router.

This heuristic overrides the previous two rules and can assert the existence of

hidden routers.

Double-zero The current router is Type N if the current and next routers’ deltas are

both zero.

Lazy detection The current router is Lazy if all probes with record route come from

IP address X , all probes without from IP Y , X 6=Y , and all probes without for

the next router also come from IP X .

As we apply these rules to Figure 7.4, the second probe has a delta of two, im-

plying a transition from a Type A to Type B router. However, addresses 128.8.128.8

and 128.8.128.9 are “off-by-one,” so because the off-by-one rule overrides the A-to-B

transition rule, we declare that the bottom topology is most likely the correct topology.

We are unable to classify all traces: these rules can lead to ambiguity and contra-

diction, e.g., one trace might classify a router as Type A, when another trace could

153

classify the same router as Type B. Using these simple rules, we can classify 65.4% of

our 65 million traces without contradiction. In Section 6.5, we use the alias resolution

tool ally [138] to evaluate the correctness of our classifications. Robust and complete

router classification and address alignment is the subject of our continued work.

6.3 Sidecar Design

Sidecar is our engine for injecting probes, including TTL-limited packets, into TCP

connections from user level without altering TCP behavior. Probes sent from within

TCP connections can traverse and expose the firewalls and NATs that traceroute prob-

ing cannot. The Sidecar system comprises connection tracking, probe identification,

RTT estimation, and rate limiting without requiring kernel (firewall or module) sup-

port. These design choices make it possible to transparently instrument TCP connec-

tions, even from the middle of the network. Figure 6.4 shows how the TCP embedding

logic in TCP Sidecar is separated from the higher-level probe-generation driver, Pas-

senger, allowing easy development of new TCP probing tools. Other Sidecar applica-

tions [130] include round trip time and bandwidth estimation.

Injecting probes into TCP without harming connections requires careful design.

Sidecar records state and application data via libpcap for many connections in parallel.

Sidecar probes take the form of replayed packets carefully crafted to look like retrans-

missions. Sidecar probes are thus transparent to connections because TCP is robust to

packet reordering and duplication. Responses to these probes are either time-exceeded

messages from routers, which are ignored by the kernel, or duplicate acknowledgments

from the destination host. Because three successive duplicate acknowledgments serve

as congestion notification event, Sidecar is careful to not send probes when data is

154

outstanding. We accomplish this by delaying probes until the connection is idle for at

least 500 ms.

By changing the TTL of replayed packets, Sidecar is able to accomplish traceroute-

like functionality in a TCP stream. When UDP-based traceroute reaches the destina-

tion host, the type of response changes from “time exceeded” to “port unreachable”: an

unambiguous sign that the destination host has been reached. With Sidecar, the desti-

nation’s equivalent response to a replayed packet probe is a duplicate acknowledgment.

Because TCP acknowledgments are cumulative and do not identify the specific seg-

ment/probe that triggered them,3 Sidecar cannot distinguish multiple responses from

the destination. For efficiency, Passenger sends low TTL probes that will probably not

reach the destination in parallel and higher TTL probes that might reach the destination

serially.

If the connection closes before probes can be sent, Sidecar can replay the final

FIN/ACK packet if the destination is in the “time-wait” state. FIN/ACK probing is

not ideal, since the local TCP stack may generate unnecessary RSTs in response to

receiver ACKs.

Sidecar permits trivial NAT detection. If Sidecar receives a “time exceeded” mes-

sage from the destination IP address of the probe, we conclude that a node behind a

NAT expired the packet and the source address of the error was rewritten by the NAT.4

The destination’s distance behind the NAT can be determined by incrementing the TTL

until receiving a redundant ACK.

3The DSACK extension [54] does identify the duplicated segment but it does not appear widely

deployed [99]. Identifying DSACK support and using it to match multiple probes and responses is

future work.

4We have found an exception to this rule: a firewall near a PlanetLab source in China would forge

“time-exceeded” responses as if from the distant destination address.

155

Sidecar parses ICMP extensions [25] allowing detection of MPLS tunnels that sup-

port them [24]. Although the utility of knowing MPLS labels is unclear, these exten-

sions proved helpful in debugging the effects of MPLS on router classification.

6.4 Passenger Design

While Sidecar is the underlying engine for embedding probes into TCP streams, Pas-

senger performs the higher level topology discovery probe generation (Figure 6.4).

Our evaluation goals in exploring Passenger are to: (a) show that embedding record

route probing within TCP connections is feasible, (b) quantify how much of network

topology record route discovers, and (c) demonstrate reasonable correctness in address

alignment over a variety of paths. To construct a dataset for this evaluation, we allow

Passenger to observe and trace within the TCP connections of two applications: a web

crawler and the CoDeeN web proxy.

6.4.1 Passenger Logic

Passenger implements the logic of our traceroute and record route probing. Sidecar

determines the type of packet to send, determines the round trip time, and returns re-

sponses; here we are concerned only with the logic of the measurement. Passenger

starts as soon as the completed connection has been idle for one half second. Be-

cause web-like connections terminate soon after becoming idle, we try to compress

the traceroute into as little time as possible. Passenger remembers the addresses it

probes so that it will not repeat a trace for the same source/destination pair.

Passenger traces have two phases. Let safettl represent an estimate of the number

of hops that probes can be sent into the network without reaching destination firewalls

156

or IDSs. We set safettl to the minimum of eleven or three less than the TTL of the

destination, as estimated from observing the TTL hops remaining of incoming packets.

In the first phase, Passenger sends probes in parallel for all TTLs between 1 and safettl

with record route set, and then waits for one RTO for them to return. Passenger repeats

this process six times, alternating probes with and without the record route option. In

the second phase, like traceroute, passenger sends three probes per hop starting at

TTL= safettl +1 until it reaches the destination or TTL=30 is reached. In this way,

Passenger records traceroute data for the entire path and record route data for TTL=1

to safettl.

6.4.2 Data Sources

CoDeeN CoDeeN [152] is a network of partially-open Web proxies deployed on Plan-

etLab. We ran Passenger for a week (May 17–24, 2006) observing CoDeeN servers.

Although CoDeeN is installed on 671 hosts, because some were inaccessible, rebooted

during that week, or had too little disk, we only recorded complete data from 234

sources. Passenger monitored connections on port 3128 to CoDeeN users, not proxied

connections to origin servers. We collected 13,447,011 traces.

Web Crawler We connect to every web server we could discover. In the first phase,

we ran the Larbin [6] web crawler, seeded with http://slashdot.org to find

316,094 websites. We then removed duplicate IP addresses to arrive at 166,745.5 In

the second phase, we ran a multi-threaded Web client from each available PlanetLab

node to each address, using Passenger to instrument the connection. Our Web client

holds each connection open for 30 seconds, as HTTP persistent connections would, to

5We initially failed to consider virtual hosting, leading to reports of abuse.

157

http://slashdot.org

allow the measurement to complete.6 The client retrieved the robots.txt file from each

server. We collected 51,742,928 traces.

PlanetLab We also collect a PlanetLab-to-PlanetLab data set using the same web

client and PlanetLab hosts as servers. This data set is a strict subset of the web crawler

data, but manageable in size. We collected 151,688 traces.

6.4.3 Safety

We limit probes to 500 kbits per second; above this rate, or the rate at which the raw

socket accepts new packets, we skip connections to trace rather than significantly delay

the probes of traces in progress. To run within CoDeeN and ensure little interference,

we used kernel resource limits to prevent unexpected, excessive memory and processor

consumption. We also fetched result data often to reduce disk consumption. We tested

our Web crawler and CoDeeN instrumentation from a local machine, grew to a few

PlanetLab nodes, and only eventually to all of them. This approach prevented early

implementation errors from causing undue havoc.

6.5 Results

Our evaluation focuses on feasibility, coverage of the topology with record route, and

correctness of address alignment (alias resolution). We also comment on the intrusive-

ness of the technique as measured anecdotally by the absence of abuse reports. Our

experiments traversed 8,817 ASes (Table 6.1) and generated 65,189,939 unique traces.

Approximately 16% of IP addresses in our experiment were discovered by record

6If the remote server closes the connection earlier, it remains in TCP’s “time-wait” state, allowing

further measurement.

158

route alone (Table 6.1, row three). These routers are either anonymous (do not re-

spond to traceroute), use MPLS to avoid decrementing the TTL, or were interfaces not

crossed by traceroute. Of the remaining IP addresses, 55.9–79.4% were discovered by

traceroute only.

6.5.1 Intrusiveness

We designed Sidecar to discover topology without the abuse reports of traceroute.

Our CoDeeN experiment probed 22,428 IP addresses over a week with no incidents.

Our web crawler experiment, however, generated ten abuse reports across 166,761

destinations. All reports noted frequent, unexpected, and synchronized accesses to

robots.txt. One noted ICMP “time-exceeded” messages, but only after being alerted

from web logs. We take this as indication that the Sidecar probing technique is in fact

unobtrusive, but our custom web crawler needs improvement. We received no reports

generated by automated intrusion detection systems. We describe our experiences in

more detail in another paper [130].

6.5.2 Record Route Coverage

The record route option holds at most nine addresses; record route adds nothing to

topology discovery further than nine hops from vantage points. To use record route

for a broad topology discovery effort requires a measurement platform with sufficient

network diversity that most of the Internet is within nine hops of at least one van-

tage point. By virtue of its geographic diversity, we believe that PlanetLab is, or is

becoming, such a platform. Here we attempt to evaluate how well PlanetLab “sees”

the broader Internet through record route, to show that record-route-based topology

discovery is feasible with current infrastructure.

159

Record route provides additional information (aliases) or confidence in that infor-

mation (multi-path detection) for nodes and links within nine hops of a vantage point.

From the PlanetLab testbed, we found that 87.6–98.5% of end-hosts and routers in the

data set are within nine hops of at least one PlanetLab node (Table 6.1, second to the

last row). Of the links discovered in our topology 59.6–69.1% were found (or con-

firmed) by RR. Perhaps surprisingly, the fraction of addresses and links reachable in

nine hops increases with the number of IP addresses. We speculate that the larger mea-

surement set more completely explores the network that is near to PlanetLab nodes,

while the measurement of the intra-PlanetLab topology discovers several paths too

long for record route and little else. A full characterization of addresses outside of

nine hops remains the subject of future work.

6.5.3 Correct Alias Resolution

Correct alias resolution in the context of record route requires accurate classification

of routers in the path. Because the rule set is ambiguous (Figure 7.4), many traces,

especially those experiencing multi-path routing or hidden routers, may be incorrectly

classified. Rather than incorporate faulty data into the analysis, we remove any trace

that results in a classification contradiction because the cost of erroneous data is imper-

missibly high. Due to the linear nature of the inference heuristics, one misclassified

router may corrupt an entire trace. We believe that a more formal inference engine

combined with active probing would reduce the number of ambiguous traces signifi-

cantly.

Alias resolution, as reported in Rocketfuel [138] and confirmed by Teixeira et

al. [149] is typically error prone. We use Rocketfuel’s ally tool [138] to validate Pas-

senger’s asserted aliases (Table 6.2, “Alias pairs”), but we use only the IP identifier

160

and common source address techniques because others are too error prone [136]. We

traced the false aliases (Table 6.2, “Ally: no”) as reported by ally to B-to-Hidden-to-A

transitions in which the Hidden interface address is falsely associated with the Type

A router. We are seeking ways of resolving this ambiguity from within the trace to

reduce the false positive rate further.

Many of these address pairs cannot be confirmed or disproven because at least one

address is unresponsive or unroutable. Ally was only able to confirm or deny aliases

for 50.6%, 18.4%, and 40.3% (“Ally:yes”+“Ally:no”/“Alias Pairs”) of asserted aliases

for the PlanetLab, Web crawler, and CoDeeN data sets. We report the false positive rate

as the fraction of aliases disproven (“Ally: no”) divided by aliases responsive (“Ally:

yes”+“Ally: no”).

6.5.4 MPLS Results

We use MPLS ICMP extensions to discover MPLS usage. Between PlanetLab hosts,

we identify 2,546 distinct routers that advertise MPLS ICMP extensions, across 38

different ASes. Among CoDeeN hosts, there were 7,730 routers and 112 different

ASes. Sidecar was not instrumented with MPLS detection at the time of the web

crawler experiment. Further investigation of the possible uses of this information is

the subject of future work.

6.6 Conclusion and Future Work

IP’s record route option has the potential to provide more detailed topology infor-

mation than previously available through traceroute. The diversity and size of the

PlanetLab platform makes this primitive practical for topology measurement. We have

161

found 16% more addresses and discovered IP aliases that cannot be resolved by the

techniques of prior mapping efforts, but at the same time, uncovered an interesting

problem of inferring the aliases between the addresses discovered by traceroute and

record route.

We believe TTL-limited record route packets can substantially improve the effi-

ciency of methods like Doubletree [46] that attempt to reduce the number of probes

required to collect a topology.

Sidecar is a new tool for network measurement. Its use of existing TCP connections

enables unintrusive measurement and its support for IP options and ICMP extensions

makes it potentially useful in developing new measurement techniques.

The code for Sidecar and Passenger, as well as the data generated from this exper-

iment are available from http://www.cs.umd.edu/projects/sidecar.

The combination of Sidecar and record route as topology discovery tools provides

many potential avenues of future work. The low rate of abuse reports opens the door

for an in depth longitudinal study of network behavior. While we demonstrate that our

heuristic solution for address assignment can classify approximately 65% of traces, we

seek a more formal treatment of the problem, with solutions that can be verified. We

also hope to investigate how the new information exposes anonymous routers [157]

that do not generate ICMP responses for traceroute, how record route performance

affects other traceroute-like measurements like RPT [67] or pathchar [69], how to as-

sign ownership to routers with this new address information [96], how to adapt the

frequency of record route probes to manage load on intermediate routers, how to use

congestion control information to limit probe rates, how address alignment would ben-

efit from other data sources like DNS or active probing, and many other questions.

162

http://www.cs.umd.edu/projects/sidecar

SRC A1
A2

A3
DST

B1 B2 C1 C2

D1 D2 E1 E2

Probe TTL=1, ICMP src=A1 RR={}
Probe TTL=2, ICMP src=B1 RR={A2}
Probe TTL=3, ICMP src=E1 RR={A3,D2} -- Route Change!

Load Balancing
Router

Probe TTL=4, ICMP src=DST RR={A2,B2,C2} -- Route Change!

Actual Topology

As discovered by traceroute only: incorrect and incomplete

As discovered by traceroute + RR: correct; requires more

False Link

Probes

SRC A1 DST

B1

E1

?
?

?

SRC A1
A2

A3
DST

B1 B2 C2

D2 E1
Identified all

three interfaces

Asserted
path

? ?

?
probes

Figure 6.2: Multi-path route detection with TTL-limited record route (“A3” denoted

the third interface of router A, etc.).

163

T
im

e

Probe TTL=1

ICMP src=192.168.0.1

RR={}

192.168.0.1
172.16.0.4

128.8.128.8

Source

Type A

Hidden

128.8.128.9
x.x.x.x

Type A

Probe TTL=2

ICMP src=128.8.128.9 RR={172.16.0.4,128.8.128.8}

128.8.128.8
128.8.128.9

Type B

??

Classification
Ambiguous

Figure 6.3: Variations in router implementations allow different topologies to generate

the same trace, creating ambiguity.

wget Codeen

Passenger

TCP/IP libpcap raw sockets

Network

Sidecar

Figure 6.4: Design layout of TCP Sidecar and Passenger.

164

Pl
an

et
L

ab
W

eb
cr

aw
le

r
C

oD
ee

N

A
ut

on
om

ou
s

Sy
st

em
s

Tr
av

er
se

d
33

1
8,

73
9

89
1

To
ta

lt
ra

ce
s

15
1,

68
8

51
,7

42
,9

28
13

,4
47

,0
11

-U
nc

la
ss

ifi
ed

du
e

to
co

nt
ra

di
ct

io
n

35
,4

50
(2

3.
3%

)
20

,3
24

,1
92

(3
9.

2%
)

1,
61

6,
07

9
(1

2.
0%

)

IP
A

dd
re

ss
es

di
sc

ov
er

ed
13

,0
48

37
5,

85
1

22
,4

28

-F
ou

nd
by

Tr
ac

er
ou

te
on

ly
7,

29
3

(5
5.

9%
)

29
8,

45
5

(7
9.

4%
)

14
,2

61
(6

3.
6%

)

-F
ou

nd
by

R
ec

or
d

R
ou

te
on

ly
2,

05
9

(1
5.

8%
)

61
,6

72
(1

6.
4%

)
3,

26
8

(1
4.

6%
)

-F
ou

nd
by

bo
th

3,
69

6
(2

8.
3%

)
15

,7
24

(4
.2

%
)

4,
89

9
(2

1.
8%

)

%
en

d-
ho

st
s

an
d

ro
ut

er
s

9
ho

ps
fr

om
a

Pl
an

et
L

ab
N

od
e

87
.6

%
98

.5
%

93
.0

%

%
lin

ks
fo

un
d

or
co

nfi
rm

ed
w

ith
R

ec
or

d
R

ou
te

59
.5

%
69

.1
%

65
.8

%

Ta
bl

e
6.

1:
Su

m
m

ar
y

of
ex

pe
ri

m
en

ta
lr

es
ul

ts
.

165

PlanetLab Web crawler CoDeeN

Alias pairs 6,789 108,870 9,233

Ally: yes 3,389 17,972 3,291

Ally: no 46 (1.3%) 2041 (10.2%) 432 (11.6%)

Table 6.2: Router alias pairs as compared to Ally.

166

Chapter 7

Topology Analysis with DisCarte

7.1 Introduction

The global topology of the Internet allows network operators and researchers to deter-

mine where losses, bottlenecks, failures, and other undesirable and anomalous events

occur. Yet this topology remains largely unknown: individual operators may know

their own networks, but neighboring networks are amorphous clouds. The absence

of precise global topology information hinders network diagnostic attempts [147, 95,

96, 67, 92, 78], inflates IP path lengths [128, 58, 137, 148], reduces the accuracy of

Internet-models [159, 100, 75], and encourages overlay networks to ignore the under-

lay [13, 105].

Because network operators rarely publish their topologies, and the IP protocols

have little explicit support for exposing the Internet’s underlying structure, researchers

must infer the topology from measurement and observation. A router-level network

topology consists of two types of features: links and aliases. A link connects two

IP addresses on distinct routers, and an alias identifies two IP addresses on the same

router. The goal is to discover a router-level map that is both accurate—all inferred

features reflect the actual topology—and complete—features are inferred for as many

167

pairs of IP addresses as possible.

The problem is that topology discovery techniques are error-prone. The current

state-of-the-art [138, 92] uses TTL-limited probes, e.g., traceroute (TR), to infer links,

and direct router probing [138, 61] to discover aliases. However, topologies inferred

from these techniques are known to inflate the number of observed routers [149],

record incorrect links [15], and bias router-degree [84]. These errors result from

routers that do not respond to alias resolution techniques, MPLS [124], anonymous

routers [157], mid-measurement path instabilities [110], and insufficient measurement

vantage points. The Passenger tool [133] demonstrates that the record route (RR) IP

option discovers aliases for unresponsive routers and exposes MPLS tunnels, anony-

mous routers, and mid-measurement path instabilities. However, RR’s accuracy de-

pends on correctly aligning RR and TR discovered IPs, itself an error-prone proce-

dure. Passenger’s preliminary work reports that almost 40% of their data could not be

aligned and was unusable. Of the usable data, almost 11% of the inferred aliases were

incorrect.

Unfortunately, accuracy and completeness can be at odds: for example, measuring

more path data can help complete the map, but may also contribute inaccurate links.

This is because topology errors accumulate—adding additional correct facts cannot

“average away” a falsely asserted link. Similarly, alias inferences are transitive—a

single false alias causes a cascading transitive closure of false aliases. We make the

observation that if all topology data has error, then the vast data required for a complete

Internet map must have a great deal of accumulated error. Thus, a topology inference

system must actively remove error in order to achieve both accuracy and completeness.

Our insight is that the overall error can be reduced by cross-validating both TR

and RR inference techniques against observed network engineering practices. For

168

example, a correctly implemented router would never forward packets directly back

to itself, so any topology that asserts a link and an alias between the same pair of IP

addresses must be inaccurate. Thus, by carefully merging three disparate sources of

information, the resultant topology is both more accurate and more complete.

We present DisCarte, a novel topology data cross-validation system. DisCarte for-

mulates topology inference and cross-validation as a constraint solving problem us-

ing disjunctive logic programming (DLP). DisCarte inputs traces from TR and RR,

and, using observed network engineering practices as constraints, outputs a single

merged topology. Compared to Rocketfuel-based [138] techniques, topologies pro-

duced with DisCarte find 11% more aliases from unresponsive routers, and expose

additional topology features such as MPLS, router manufacturer, equal cost multi-

pathing, and hidden and anonymous routers. Compared to Passenger [133], DisCarte

correctly aligns 96% of RR and TR addresses, and reduces the false alias rate to ap-

proximately 3%. The effect of the improved topology is visually evident: we compare

the topology of the popular Abilene network as inferred by Rocketfuel and DisCarte

to the actual published topology (Figure 7.1).

In this chapter, we describe the qualitative benefits of DisCarte inferred topolo-

gies (Section 7.2) and the difficulties in achieving accurate topologies (Section 7.3).

We then discuss the individual elements of the DisCarte system (Section 7.4) and the

divide-and-conquer scheme (Section 7.5) we implement to scale DLP to the 1.3 bil-

lion facts in our system. We detail our data collection process (Section 7.6), quantify

the benefit of DisCarte inferred topologies (Section 7.7), and show DisCarte’s effect

on bias (Section 7.8). We then conclude how one might redesign record route (Sec-

tion 7.10) to aid topology discovery and describe our future work (Section 7.11).

169

sn
va

ng

w
as

h

ne
w

y3
2a

oa

ch
ic

at
la

st
tln

g

at
la

ch
ic

at
la

ch
ic

ka
ns

at
la

ch
ic

st
tln

g

ch
ic

ch
ic

st
tln

g

ch
ic

sa
lt

ka
ns

ne
w

y3
2a

oa
at

la

st
tln

g

hs
tn

ng

dn
vr

ng

hs
tn

ng
sn

va
ng

w
as

h

ch
ic

w
as

h

w
as

h

ch
ic

dn
vr

ng

dn
vr

ng

lo
sa

ng

ne
w

y3
2a

oa

ch
ic

hs
tn

ng

ch
ic

at
la

lo
sa

ng

ch
ic

lo
sa

ng

ch
ic

ne
w

y3
2a

oa

ch
ichs

tn
ng

sn
va

ng

lo
sa

ng

sa
lt

ch
ic

dn
vr

ng

w
as

h

st
tln

g

w
as

h

lo
sa

ng

ka
ns

ch
ic

ne
w

y3
2a

oa

ch
ic

ka
ns

sn
va

ng

w
as

h

w
as

h

at
la

-m
5

ka
ns

ne
w

y3
2a

oa
hs

tn
ng

hs
tn

ng

sn
va

ng

ch
ic

ch
ic

ch
ic

ch
ic

at
lane

w
y3

2a
oa

lo
sa

ng

at
la

st
tln

g

w
as

h

dn
vr

ng
ne

w
y3

2a
oa

sa
lt

ne
w

y3
2a

oa

lo
sa

ng

ka
ns

w
as

h

st
tln

g

hs
tn

ng

at
la

-m
5

ch
ic

dn
vr

ng

sn
va

ng

at
la

sa
lt

ne
w

y3
2a

oa

lo
sa

ng

ka
ns

w
as

h

st
tln

g

hs
tn

ng

at
la

-m
5

ch
ic

dn
vr

ng

sn
va

ng

at
la

Fi
gu

re
7.

1:
A

bi
le

ne
to

po
lo

gy
:

in
fe

rr
ed

by
R

oc
ke

tf
ue

l(
le

ft
,r

ou
te

rs
un

re
sp

on
si

ve
to

di
re

ct
al

ia
s

re
so

lu
tio

n)
,D

is
C

ar
te

(m
id

dl
e)

,

an
d

ac
tu

al
to

po
lo

gy
(r

ig
ht

).
R

ec
ta

ng
le

s
ar

e
ro

ut
er

s
w

ith
in

te
ri

or
ov

al
s

re
pr

es
en

tin
g

in
te

rf
ac

es
.

170

E16

planetlab4.mnl.cs.sunysb.edu
(130.245.145.153)

R5 (Lazy)

bjcd3.cernet.net
(202.112.46.161)

?? (202.112.53.181)

R3 (Cisco)

?? (202.112.62.86)

?? (202.112.62.82)

?? (202.112.62.210)

?? (202.112.53.217)

?? (202.112.53.213)

?? (202.112.38.33)

?? (202.112.38.29)

?? (202.112.38.25)

R4 (Cisco)

?? (202.112.62.85)

?? (202.112.62.81)

?? (202.112.62.209)

cdbj3.cernet.net
 (202.112.46.162)

R2 (Juniper)

?? (219.243.200.38)

?? (202.112.53.218)

?? (202.112.53.214)

?? (202.112.38.34)

?? (202.112.38.30)

?? (202.112.38.26)

S1

zzu1.6planetlab.edu.cn
(219.243.200.37)

E16

planetlab4.mnl.cs.sunysb.edu
 (130.245.145.153)

R5

bjcd3.cernet.net
 (202.112.46.161)

R4

?? (202.112.62.81)

R2

?? (219.243.200.38)

Anonymous

??

S1

zzu1.6planetlab.edu.cn
 (219.243.200.37)

Figure 7.2: Partial Trace from Zhengzhou University, China to SUNY Stony Brook,

USA; inferred by DisCarte (top) and Rocketfuel-techniques (bottom). DisCarte finds

many load-balanced paths through an anonymous router (R3) and helps determine the

implementation class of each device along the path.

7.2 Cross-Validating with DISCARTE

In this section, we describe the benefits of correctly merged traceroute- and RR-inferred

topologies. Traceroute (TR) uses TTL-limited probes to generate ICMP time-exceeded

responses from each router on a path. The source IP address of each time-exceeded

message exposes an IP address for the corresponding router. The record route (RR)

IP option is an array in the IP header into which each router on the path inserts an IP

address. The array can store at most nine addresses, limited by the size limit of the

IP header. Because of how they are implemented (Section 7.3), TR and RR discover

distinct IP addresses for a given router. We say that a TR-trace and RR-trace have been

correctly address aligned if each TR-discovered address has been correctly mapped to

the RR-discovered address of the same router.

TR and RR can be combined into a single TTL-limited probe with the RR option

set. Because an ICMP unreachable error message includes the entire IP header of

171

the failed message, we can recover the RR array from the responses to TTL-limited

probes: RR packets need not reach the destination of the probe. Thus, RR does not

require the packet destination to return the RR probe, i.e., “ping -R” is not the only

means of collecting RR data.

7.2.1 Benefits of Cross-Validation

Cross-validating TR and RR information against observed network engineering prac-

tices results in higher quality address alignment. Correct address alignment discovers

aliases for routers that do not respond to direct probing, hidden and anonymous routers,

and multi-path load balancing.

Alias resolution does not require direct probing In our survey, 193,192 of 602,136

(32.1%) IP addresses do not respond to probes addressed directly to them, preventing

both IP-identifier-based matching (“ally” [138]) and source-address matching [109,

61] alias resolution techniques. Six years ago, approximately 10% were unrespon-

sive [138], suggesting that techniques for alias resolution without direct probing will

be increasingly important. We further characterize the aliases RR allows us to discover

in Section 7.7.

RR exposes hidden and anonymous routers We call routers hidden if they do

not decrement TTL and do not appear inside a traceroute; some implementations of

MPLS [124] cause hidden routers. Anonymous routers [157] are routers that decrement

TTL but do not send the corresponding ICMP time-exceeded messages: they appear

as a ’*’ in traceroute. The absence of information from these routers is a significant

source of error [157]. Out of 100,256 routers observed in our study, RR discovered IP

addresses for 2,440 (2.4%) distinct anonymous routers that would have been missed

by TR-only techniques. Additionally, we discover 329 (0.3%) distinct hidden routers.

172

RR discovers multi-path load balancing Internet Service Providers (ISPs) use mul-

tiple routes across equal-cost paths to load balance traffic. To prevent out-of-order

packet arrival, load balancing routers attempt to map packets in the same flow to the

same path. However, due to implementation decisions [37] in some routers, packets

with IP options, including RR, break this flow-to-path mapping and traverse multiple

equal-cost paths. Thus, probes with RR detect load balancing routers and enumerate

additional paths more correctly than TR alone.

RR exposes mid-measurement path instability Mid-measurement path instabili-

ties cause TR to infer incorrect links: TR assumes that sequential probes traverse the

same paths. Recent techniques (Paris traceroute [15] and TCP Sidecar [131, 133])

mitigate this concern by preventing a specific class of instabilities: five-tuple load bal-

ancing multi-path. Because RR has per-packet path information, we can detect all

forms of mid-measurement path changes in the first nine hops. Thus, links discovered

via RR exist with higher confidence than links discovered by TR alone.

A trace between Zhengzhou University, China to SUNY Stony Brook, USA (Fig-

ure 7.2) is an example of the differences between topology discovery with and without

DisCarte. Each box represents a router, and each rectangle within a router represents

an interface. Lines between interfaces indicate links. We resolve DNS names of IP

addresses when available, and show only the first four hops of the trace then a dot-

ted line to the destination. The trace without RR discovers at most one interface on

each router, and fails to discover any interfaces on router 3 (because it is anonymous).

Adding RR to the probes and performing address alignment (Section 7.3) discovers

many interfaces on each router and exposes many connections between routers, pre-

sumably for load balancing. Router labels (S1, R2, etc.) are annotated with their

inferred RR implementation type (Section 7.3.1).

173

7.2.2 Cross Validation Limitations: RR

Many of the benefits of cross-validation rely on the RR option which has two limita-

tions: RR includes only nine hops of data and packets with RR may be dropped or

filtered. We describe each in turn.

Because the IP header can hold at most 60 bytes, RR can record only nine IP

addresses. We believe the nine-hop limit is why RR has been passed over for topology

discovery. Yet, there is reason to revisit this concern. PlanetLab makes available a

geographically diverse set of vantage points; these may be within nine hops of much

of the network. Further, our experiments use TR probes with and without RR set, so

any information gained from RR strictly increases our understanding of the topology.

Second, routers might choose to drop or filter packets with IP options. Of the

602,136 IP addresses of routers we observed within nine hops of our vantage points

(that could have dropped RR), only 8,441 (1%) dropped packets with record route. We

mitigate this limitation by running all traces with and without RR set.

7.3 Address Alignment

In order to achieve the benefits of cross-validation (Section 7.2), addresses discovered

by TR and RR must be correctly aligned. Address alignment is the process of matching

the IP addresses discovered by RR to the corresponding addresses discovered by TR.

Accurate address alignment requires classifying the RR implementation type of each

router in a trace and correctly handling tricky topology features.

174

7.3.1 Under-Standardized RR Implementations

The record route IP option [116] tells routers to record their IP address into a buffer in

a packet’s IP header. The interface that is recorded is the first source of implementa-

tion variation. Although RFC 791 states that a router should record “its own Internet

address as known in the environment into which this data-gram is being forwarded,”

we have observed that routers record the address corresponding to the incoming, out-

going, or internal interface depending on implementation. The second implementation

variation we have observed is whether the address is recorded for an expiring packet,

that is, when a packet arrives with TTL=1.

We observe six different RR implementations. We describe each implementation,

sorted in order of popularity, along with our best estimate of its manufacturer. An

implementation’s popularity is a function of the total number of routers we were able

to classify.

Cisco: 61.9% This implementation does not update the RR array for expiring packets:

when a TTL=1 packet arrives at a router, the router does not add an address to the

RR array. When a packet with TTL>1 passes through the router, the outgoing

interface address is recorded. We associate this behavior with Cisco routers due

to its popularity and private communications with Cisco engineers.

MPLS: 13.3% This implementation behaves like a Cisco router (above), except for

interfaces with MPLS [124] enabled. A packet that exits an MPLS-enabled in-

terface does not modify the RR array (similar to NotImpl, below). We know that

these interfaces use MPLS because they also implement the ICMP unreachable

MPLS trailers protocol [26] that returns MPLS tunnel identifiers.

NotImpl: 9.1% Some routers disable or do not implement RR. These routers pass

RR probes through without modification. We believe that RR may have been

175

previously over looked due to inflated expectation of the number of NotImpl

routers.

Juniper: 7.1% In this implementation, the RR array is updated for expiring pack-

ets. Some routers record the outgoing interface, while others record the internal

loopback interface. Internal loopback addresses can be distinguished from out-

going addresses by hand, for example, if the reverse DNS look-up of the address

contains the string “lo-”. We believe this RR-type corresponds to Juniper due to

its appearance in the Abilene network which uses Juniper routers [4].

Lazy: 5.8% These routers do not decrement TTL for packets with the RR option set,

and instead allow the packet to continue to the next hop. This caused significant

confusion in our initial experiments using interleaved packets with and without

RR set. Publicly available router configurations at National Lambda Rail (NLR)

suggest that Cisco’s Carrier line of routers are Lazy. Of all RR implementations

we have observed, this is the only one that would seem to violate RFC 791.

Linux: 2.7% Routers that implement Linux-based IP stacks do update the record

route array for expiring packets, but instead of adding the address correspond-

ing to the outgoing interface, they use the address of the incoming interface.

However, for packets that do not expire, the outgoing interface address is used.

With the exception of the Lazy RR implementation, we believe that these imple-

mentation variations correctly implement the RR specification as described in RFC 791.

The variations in implementation arise because RR is underspecified, and we recom-

mend additions to the specification (Section 7.11). Also, note that the “Flaky” RR

implementation, first identified by Sherwood and Spring [133], does not appear to ex-

ist. We believe that Flaky is a combination of the Lazy implementation type above and

equal-cost path routing of different hop counts.

176

7.3.2 Topology Traps

 (141.149.218.1) (141.149.218.208)

planetlab3−dsl.cs.cornell.edu

S1 (NotImpl)

R2 (Cisco)

?? (130.81.18.177)

 (130.81.8.237)

at−1−1−0−1711.CORE−RTR2.SYR.verizon−gni.net

R3 (Juniper)

?? (130.81.20.101)

 (130.81.8.233)

at−1−1−0−1710.CORE−RTR1.SYR.verizon−gni.net

R5 (Juniper)

?? (130.81.18.176)

R4 (NotImpl, MPLS trailer)

 (130.81.8.234)

L201.DSL−RTR1.SYR.verizon−gni.net

 (130.81.8.238)

A4−0−0−1711.DSL−RTR1.SYR.verizon−gni.net

?? (130.81.20.100)

 (213.19.160.195)

E16

R6 (NotImpl, MPLS trailer)

A3−0−0−1710.DSL−RTR1.SYR.verizon−gni.net

planetlab−2.amst.nodes.planet−lab.org

Figure 7.3: Partial trace from Cornell to Amsterdam where probes that take different-

length paths: bottom path is one hop shorter then top.

We identify six topology features that complicated accurate topology discovery.

In this section, we catalog these features to show the complexity inherent in topology

discovery and motivate the need for an automated inference tool.

Hidden routers do not decrement TTL, and are thus are not detected by TTL-limited

topology discovery. Hidden routers are caused by certain configurations of

multi-protocol label switching [124] (MPLS), and result in missing nodes and

incorrect link inferences. As with anonymous routers, the RR IP options can

be used to detect hidden routers if supported. Also, the use of MPLS can be

detected by an optional MPLS tag attached as a footer in TTL-exceeded mes-

sages [26]. We discovered 329 hidden routers in our experiments.

Non-standard firewall policies introduce varied sources of error. In one case, a fire-

wall in China forges TTL-exceeded messages from the destination [133] for

packets with the RR option set. Also, we have observed firewalls that send ICMP

source quench, ICMP parameter problem, and ICMP administratively prohibited

messages. Each of these behaviors must be identified and removed from the data

before processing.

Enabling IP options breaks load-balancing, spreading a single flow across multiple

177

equal-cost paths. Five-tuple load-balancing uses the source and destination IP

and port fields, along with the IP protocol to identify a flow, and maps all packets

in the same flow to the same path [15]. However, adding IP options to packets

with the same five-tuple signature breaks this scheme. We hypothesize that some

router implementations fail to account for IP options when calculating the packet

offset to the TCP/UDP source and destination port fields when computing the 5-

tuple. In other implementations, packets with IP options are routed on arbitrary

equal-cost path. Both behaviors add to the complexity of address alignment.

Different-length equal-cost paths can create false links. Equal-cost paths may have

different hop-count lengths. This results in multiple sets of probes, offset in

TTL, for the same routers along the path. We use RR to partition probes by

the path they traversed, and only compare probes that take the same path. By

partitioning probes by the paths that they traverse, we remove one source of

self-loops common to traceroute-inferred topologies [15]. Traces from Cornell

University to PlanetLab nodes in Amsterdam have this behavior (Figure 7.3).

RR fills. The address alignment algorithm monitors hop-by-hop increases in the size

of the RR array to classify each router’s RR type (Section 7.4). Because a given

hop may add more than one entry into the RR array when the RR array fills up—

reaches nine entries, the information about the true number of RR entries for this

hop is lost. For example, a packet with eight RR entries that transitions from a

Cisco RR-type router to a Juniper RR-type router, would normally receive two

new RR entries. However, since there is only space for one more IP address,

the second entry is lost. The address alignment algorithm has to consider more

possibilities when the RR array fills. DisCarte’s DLP code base doubles in size

to handle this seemingly simple case.

178

Persistent Routing Loops can prevent naive trace collection from terminating. Our

data collection scripts had to be rewritten to detect loops. We revisited the loop-

ing paths three weeks later and found that approximately half still persisted. We

further characterize the routing loops discovered in Section 7.6.3.

7.3.3 Ambiguity in classification

The variety of RR implementations make router classification ambiguous. Because dif-

ferent topologies and router implementations can generate the same trace (Figure 7.4),

S A X B Y C Z

Cisco Cisco Juniper

S XB ZCY

Juniper JuniperHidden

A

NotImpl

Probe ttl ICMP source IP RR Array

1 A -
2 B X
3 C X,Y,Z

Figure 7.4: Varied RR implementations create ambiguous alignments between IP

addresses discovered by TR probes (A,B,C) and those discovered by RR (X, Y, Z).

We show two of fifteen possible topologies inferred from a partial hypothetical trace

from source S: rectangles represent routers and letters are IP interfaces. RR delta is

the number of new RR entries since the previous TTL.

179

BGP
Prefixes

Set .1
In each

/24 Prefix

DST
IPs

TR,RR
Traces
From

All P-Lab
Nodes All

IPs

All
Traces

ally

Pre-
Process

Probed
Aliases

Probe
Pairs

Models

Good
Facts

Conflict
Facts

Hints

Union
Models

Resolve
Conflicts

DLP

Make
Stoplist

Stop
Lists

6.1 6.2
4.2

4.3,4.4
5.1

5.2

Data Collection Phase Fact Generation Phase

Fact
Processing

Phase

Final
Topology

§ §
§

§
§

§

Figure 7.5: Overview of the DisCarte Topology Inference System.

a router may be misclassified, leading to mismatched addresses and aliases. Thus, in

the same trace, the IP X might be an alias for IP A or B depending on the RR im-

plementation. Further, the third probe discovers two new RR addresses (Y, Z) and it

is ambiguous whether IP address Y belongs to a Hidden router. We depict two of 15

possible interpretations of the trace.

A single mismatched pair of addresses causes cascading errors as each subsequent

RR address in a trace is misaligned. However, using observed network engineering

practices it is possible to correctly match RR and traceroute discovered addresses (Sec-

tion 7.4.4). For example, network engineers tend to allocate IP addresses on either end

of a link out of a /30 or /31 network [65, 92], so the topology that best matches this

pattern is most likely correct.

7.4 DISCARTE

Large-scale cross-validation and address alignment is difficult and error-prone, not

only because of the need to infer the different RR implementations of routers, but also

due to complex network topology features (Section 7.3).

Our system, DisCarte, uses disjunctive logic programming (DLP) [32, 123, 86], a

180

constraint solving technique that, to the best of our knowledge, has not been used for

topology discovery. DLP has the ability to describe a low-level set of inter-dependent

interactions while simultaneously shaping the solution to match high-level constraints.

For example, we instruct DLP to find the set of RR implementations such that the link

and alias assignments do not cause routers to have self-loops. The DisCarte process

(Figure 7.5) consists fact generation (Section 7.4.2) and fact processing (Section 7.4.3

– 7.5) phases. We describe our data collection phase in Section 7.6. In this section,

we provide a brief description of the DLP technique, describe how we transform raw

topology data into DLP facts, and present the DisCarte address alignment algorithm

and its corresponding cost function.

7.4.1 DLP Introduction

DLP is a formalism representing indefinite information. Superficially similar to Pro-

log, language statements consist of facts, inference rules, and weak and strong con-

straints. Inference rules are disjunctive—they are of the form:

fact1 or fact2 or . . . or factn⇐ fact0 (7.1)

indicating that fact0 implies exactly one fact in the set of facts fact1 . . . factn. Because

each inference rule can potentially imply many different facts, a disjunctive logic pro-

gram has many possible solutions, or models. Potential models are then pruned by

strong and weak constraints. Any model that violates a strong constraint is removed

from the solution set, and the remaining models are assigned a numeric cost based on

the weak constraints they violate. The output from a DLP is the lowest cost model of

inferred facts generated from input facts and inference rules.

The specific DLP implementation we use is DLV [86]. The language restricts how

constraints are specified, to preserve the monotonicity property of the cost function:

181

that adding new facts can only increase that cost of a model. DLV uses this property to

prune high cost sub-trees from the solution space. DLP can efficiently represent com-

plex problems, for example, the formulation for the graph 3-color-ability problem [59]

is two lines long [45].

7.4.2 Data Pre-processing

Raw trace data must be converted into facts for DLP. These facts consist of both

straightforward parsing of the data, deriving facts more easily computed without DLP,

and probe pairs. Here, we describe the facts computed in the pre-processing step.

Some network topology features can be identified statically without DLP. Routers

with the Linux RR implementation have a simple signature: the response to a TTL-

limited probe comes from router X , and the last entry in the RR array is also X .

Similarly, we declare a router X to be Lazy if all non-RR probes with TTL=t return

ICMP time-exceeded responses from X , all RR probes with TTL=t return responses

from a different router Y , and all non-RR probes with TTL=t + 1 return from router

Y . Responses to RR probes from non-standard firewalls have the return address set to

the probe’s destination, instead of the router’s interface. Once these network features

have been detected, we correct for them as we identify probe pairs.

Two TTL-limited probes form a “probe pair” if one probe expires at router X ,

and the other probe goes through X and expires at the next TTL. Each probe pair

fact is of the following form: “probePair(p1,p2,delta)”, where p1 and p2 are unique

probe identifiers, and delta is the difference between the size of the two RR arrays.

By convention, p2 is the probe that went one TTL farther. Identifying probe pairs in

non-RR (traceroute-only) data is trivial but error prone: mid-measurement path insta-

bilities (Section 7.2) can cause sequential probes to take different paths. When adding

182

RR to probes, probe pair identification becomes more accurate—RR probes record the

traversed path—but more complicated. Lazy RR implementations and multi-path rout-

ing with different length paths complicate probe pair identification. For example, after

passing through a Lazy router, TTL-limited probes with RR set go one hop farther then

intended. Before we can try to identify probe pairs in the presence of a Lazy router,

all probes with RR that pass through that router must be re-normalized as if they were

sent from the subsequent TTL. Also, if there is evidence of multi-path routing with

different length paths, we must be careful to only compare probes that took the same

length path. Last, if a trace has both Lazy routers and different length paths, we can

only identify Lazy routers on the path taken by the non-RR probes, so information on

the other path must be discarded.

7.4.3 Address Alignment with DLP

Though an exotic choice, DLP lends itself well to the address alignment problem.

For each trace, the pre-processor will output a set of potentially over-lapping probe

pairs such as “probePair(X ,Y ,delta1)” and “probePair(Y ,Z,delta2)”. The job of the

DLP is to infer the most likely RR implementation type assignments that are globally

consistent: router Y must have the same RR type in all of its probe pairs. Then, based

on the type assignments, DLP outputs link and alias facts that form a topology.

To constrain the assignment of implementation types to those consistent with the

probe pair facts, we express DLP inference rules that describe each possible transition

from router to router for each delta in a probe pair. The delta is the number of addi-

tional RR entries in the second probe of the pair, and may be any number from 0 to

9, though we have not observed a delta greater than 4. An RR entry will be added if

(a) leaving a Cisco router, (b) arriving at a Juniper or Linux router, or (c) traversing a

183

hidden router. Traversing a NotImpl router (or entering an MPLS tunnel, which has the

same effect) does not add to the delta. The inference rule is the list of possible RR-type

transitions that would result in a probe pair with the same delta. For example:

transition(X, Y,Cisco, Cisco) or

transition(X, Y, Juniper, Juniper) or

transition(X, Y,Cisco,NotImpl) or

transition(X, Y,NotImpl, Juniper) or

transition(X, Y,NotImpl,Hidden, Cisco) or

transition(X, Y,NotImpl,Hidden,NotImpl) or

⇐probePair(X, Y, delta),

delta = 1. (7.2)

indicates that if we find a probe pair with delta = 1, then the transition between the

router corresponding to the first probe (X) and the router corresponding to the second

probe (Y) is a transition from a Cisco-type RR router to another Cisco-type RR router

or from a Juniper-type RR type router to another Juniper-type RR router, etc. We must

include more atypical transitions, such as from a router that does not implement RR

(NotImpl), through a router that does not show up in traceroute but implements RR

(Hidden), to another router that does not implement RR (NotImpl). We wrote DLP

inference rules for delta=0 . . . 4, and show the possible transitions from 0 through 2

in Table 7.1. We also implement a duplicate set of all rules where the RR array is

full (Section 7.3.2). Thus for a probe with full RR array and delta = X , all possible

transitions for delta ≥ X must be considered.

Multiple possible transitions per probe pair and independent computation of probe

pairs imply that there are potentially exponentially many models relative to the number

184

of probe pairs. We discuss the cost function for intelligently pruning this set to produce

the best model (Section 7.4.4) and our divide-and-conquer technique for scaling this

algorithm (Section 7.5).

7.4.4 Engineering Practices and Cost Function

Recall from Section 7.4.1 that DLP supports strong and weak constraints: models

that violate strong constraints are removed and the rest are ordered by degree of weak

constraints violated. DLP outputs the lowest cost model.

The only strong constraint in the DisCarte system is that a router’s RR implementa-

tion must be consistent across all its interfaces. In other words, it is never the case that

the same router uses the Cisco RR behavior for one interface and Juniper RR behavior

for another interface. A potential issue with this rule is the MPLS RR type, where

individual interfaces might appear to be of RR type Cisco or NotImpl. The strong

constraints are carefully written to handle this exception.

Weak constraints are chosen based on observed patterns which we believe corre-

spond to network engineering practices. Each practice should hold as a general rule of

thumb, but may be violated in an individual solution. Thus the model that violates the

fewest practices is likely to be the closest approximation of reality. Here we list weak

constraints in order of importance.

1. There should be no self-loops. We believe a correctly-implemented router would

never route packets directly back to itself. Avoiding this condition prevents situ-

ations where two distinct routers are merged by a single bad alias, and conversely

when a link is incorrectly added between interfaces on the same router [15].

2. Many IP addresses on either end of a link are adjacent in IP space: they are “off-

by-one.” We expect that network architects try to conserve address space by

185

de
lta

=0
de

lta
=1

de
lta

=2

N
ot

Im
pl
→

N
ot

Im
pl

N
ot

Im
pl
→

H
id

de
n
→

N
ot

Im
pl

N
ot

Im
pl
→

H
id

de
n
→

H
id

de
n
→

N
ot

Im
pl

N
ot

Im
pl
→

C
is

co
N

ot
Im

pl
→

H
id

de
n
→

C
is

co
N

ot
Im

pl
→

H
id

de
n
→

H
id

de
n
→

C
is

co

Ju
ni

pe
ro

rL
in

ux
→

N
ot

Im
pl

Ju
ni

pe
ro

rL
in

ux
→

H
id

de
n
→

N
ot

Im
pl

Ju
ni

pe
ro

rL
in

ux
→

H
id

de
n
→

H
id

de
n
→

N
ot

Im
pl

Ju
ni

pe
ro

rL
in

ux
→

C
is

co
Ju

ni
pe

ro
rL

in
ux
→

H
id

de
n
→

C
is

co
Ju

ni
pe

ro
rL

in
ux
→

H
id

de
n
→

H
id

de
n
→

C
is

co

N
ot

Im
pl
→

Ju
ni

pe
ro

rL
in

ux
N

ot
Im

pl
→

H
id

de
n
→

Ju
ni

pe
ro

rL
in

ux

C
is

co
→

N
ot

Im
pl

C
is

co
→

H
id

de
n
→

N
ot

Im
pl

C
is

co
→

C
is

co
C

is
co
→

H
id

de
n
→

C
is

co

Ju
ni

pe
ro

rL
in

ux
→

Ju
ni

pe
ro

rL
in

ux
Ju

ni
pe

ro
rL

in
ux
→

H
id

de
n
→

Ju
ni

pe
ro

rL
in

ux

C
is

co
→

Ju
ni

pe
ro

rL
in

ux

Ta
bl

e
7.

1:
Po

ss
ib

le
ro

ut
er

R
R

im
pl

em
en

ta
tio

n
tr

an
si

tio
ns

ar
ra

ng
ed

by
R

R
de

lta
;d

el
ta

s
3

an
d

4
ar

e
no

ts
ho

w
n.

Ju
ni

pe
ra

nd
L

in
ux

ar
e

w
ri

tte
n

to
ge

th
er

to
sa

ve
sp

ac
e.

186

using the smallest network blocks available, either /30 or /31. The implication is

that models where the IP addresses of links are off-by-one should be preferred

over those without. Gunes et al. use this technique to infer aliases directly [65].

Figures 7.2 and 7.3 show this behavior.

3. Aliases inferred by direct probing (ally [138]) are often correct. The validity

of direct probing techniques [142, 61] has been independently demonstrated,

so that information should be used when available. However, due to temporal

changes in topology or potential for inaccuracies in the technique, information

from direct probing is not guaranteed, thus it remains a weak constraint.

4. Hidden routers are rare, so of two equally-likely models, the solution with the

fewest hidden routers should be preferred. We derive this rule from observa-

tion of out-of-band data, such as DNS naming conventions and /30 and /31 IP

addressing in links.

5. Routers supporting RR are more common than those that do not (NotImpl). We

verify this empirically by observing that with each new TTL, subsequent probes

in a trace typically record new RR entries.

The cost for a model is assigned based on the number of practices violated, weighted

by the importance of the practice. We experimented with different weight assignments,

but as long as the relative importance of practices remained as above, the weight as-

signment did not affect the final solution. Also, it is possible for DLP to output multi-

ple equal-cost models, if there is insufficient information to make an alignment, or no

model at all, if there is an error in the data or flaw in our model. We next address both

points further.

187

Two-Clique

S1 S2 S1 S2

D

Triangle Subset

Overlap
for

Cross-
Validation

Figure 7.6: We first align addresses in two-cliques (left) between all sources and then

subset triangles (right) to all destinations increasing overlap and decreasing errors.

7.5 Scaling and Conflicts

DLP alone does not scale to Internet-sized topologies, as the number of possible RR

implementation assignments grows exponentially with the number of probe pairs. Our

top-level approach is to process the data in pieces large enough to provide the correct

solutions, yet small enough that they are solved quickly—divide and conquer. Merging

processed pieces back together can expose conflicts: that the same pair of IP addresses

are believed to be both aliased and linked. In this section, we describe a data partition-

ing method that reduces conflicts and engineer a technique to resolve conflicts once

they occur.

7.5.1 Divide and Conquer

Dividing the data is easy; dividing the data while preserving enough information for

DLP to produce meaningful results is difficult. Our first approaches at partitioning

188

the data produced a scalable execution—one trace per run, or many traces from the

same source—but they resulted in many incorrect inferences. Because each run inter-

preted only the data from probes leaving the source, the DLP solver missed potentially

conflicting data from measuring the return path.

To provide a core of correct, reliable address alignments and router implementation

inferences, we start by computing all two-cliques—the trace from site X to Y with the

trace from Y to X—as shown in Figure 7.6, left.

Atop this core, we process triangle-like subsets of all traces between pairs of

sources and a destination (Figure 7.6, right). The insight is that the path between

the source pair has already been computed and found to be free of conflicts, so it is

reliable. By using this approach, we reduce the number of unresolved conflicts—those

conflicting inferences that remained after all processing—from 1,547 to 28 in the Plan-

etLab data-set.

We hoped to process all possible triangle subsets for maximum overlap and thus

maximum cross-validation, but with 379 sources and 376,408 destinations, this task

is intractable. Instead, we processed the 71 million non-overlapping triangle subsets

on a 341 processor (heterogeneous) Condor [91] cluster. Triangle subsets typically

take a second to process, though the execution time is highly variable. The Condor

scheduler estimates that we have used 96,225 hours or approximately 11 CPU years

on this project (including time spent debugging).

7.5.2 Unions and Conflicts

We extract the facts in the models produced by the divide and conquer phase and

search for contradictions. A contradiction appears when two addresses that are thought

to be aliases are seen to be linked in a subset of facts. (Two IP addresses can be

189

assigned to the same router if they are aliases of aliases, so the alias inference can

result from several sets of facts; a link cannot be synthesized from different traces–see

Section 7.4).

To resolve conflicts, we pick an arbitrary model from each faction (those indicating

link and those indicating alias) and run both input subsets together through DLP. If the

result contains exactly one model, then the conflict is resolved, and we record whether

the IP addresses are linked or aliased as a hint. Once the hint is recorded, all affected

models are recomputed via DLP.

The conflict resolver can fail to resolve a conflict if the DLP outputs multiple mod-

els with both link and alias facts asserted, or no model at all. Having multiple models

indicates that we have insufficient information to resolve this conflict, whereas pro-

ducing no models indicates an error in the input or a potentially new RR behavior. In

any case, if the conflict resolver cannot resolve the conflict, then all facts associated

with the two IP addresses are removed from the model. In our experiments, 12,731

of 9,793,309 (0.13%) of subsets produce no valid model, and 22,095 of 1,021,027

(3.7%) of facts remain unresolved. It is the subject of our future work to characterize

the unresolvable traces and improve the conflict resolution process.

7.6 Data Collection

We collect two sets of topology data to validate DisCarte: one between PlanetLab

nodes and the other from PlanetLab nodes to all advertised BGP prefixes. For both,

we perform TTL-limited traceroute-like probes with and without the RR option set.

For the BGP prefixes data set, we also use the “stoplist” technique to avoid probing

destinations in a way that might appear abusive. We conclude by reporting on the

190

distribution of stable routing loops that we discover in our experiments.

7.6.1 Data Sets

The PlanetLab [114] data set is an all-pairs trace, from all PlanetLab nodes to all other

PlanetLab nodes. This repeats the Passenger [133] study. Because some PlanetLab

nodes were unavailable, we were able to collect data from only 387 nodes.

In the BGP data set, we probe 376,408 destinations. To generate the destinations,

we divide each advertised BGP prefix [101] into a /24 sub-prefix, choose a repre-

sentative address from each by setting the last bit, and then remove unresponsive IP

addresses. This IP generation strategy is similar to iPlane [92], except that we dis-

aggregate larger prefixes down to /24-sized sub-nets.

We probe using traceroute’s increasing TTL, alternating probes with and without

the RR option set, three times with each. We stop probing a destination after probes

for six sequential TTLs have been dropped. Due to firewalls that drop probes and

source nodes rebooting, we do not have data for all sources to all destinations, but we

do collect approximately 1.3 billion probe responses.

7.6.2 Stoplist Probing

We believe that RR probes are more likely to generate abuse reports then other topol-

ogy discovery techniques. The RR option is rare and intrusion detection systems target

anomalous events. However, we note that network mapping need not probe destination

hosts often: careful measurement coordination can avoid reports of abuse. Our insight

is that we can avoid probing destination networks from every source by noticing when

the path from a new source merges with an already-observed path.

The goal of our “stoplist” technique is to give each destination a red zone: a region

191

close to the destination that will not be probed from machines outside our control. A

stoplist is a per-destination list of the last k IP addresses on a trace to the destination.

We generate the stoplist from a single host under our administrative control, so po-

tential abuse reports can be handled locally without involving PlanetLab support. To

generate the stoplist, we run a reverse traceroute to each destination and record the last

k = 3 hops. A reverse traceroute works by guessing the TTL distance to the end host,

sending a probe, and then searching with larger TTL if the destination was not reached,

or with smaller TTL if it was. Once the TTL distance to the end host is known, the last

three hops are determined by decrementing the TTL.

The stoplist is then distributed among sources, and as each node traces towards a

destination it stops when an IP on the stoplist is discovered. Using this technique, we

received no abuse reports either in generating or using the stoplist.

7.6.3 Routing Loops

Routing loops are a symptom of network misconfiguration and can frustrate topology

inference. DisCarte found a surprisingly high number of routing loops: 8,550 source-

destination pairs contained a persistent routing loop and prevented packets from reach-

ing the destination. These pairs were re-tested three weeks later. We were not able to

retest 2,071 (24.1%) of these pairs, because the configuration of the source nodes had

changed. At the later date, 4,501 (52.6%) of the loops were resolved, while 1,976

(23.1%) remained.

Of the routing loops that persisted through both tests, 689 unique routers appear

4,544 times in some part of a loop. China Railway Internet (CRNET, AS 9394) has

more of these routers (61) than any other AS. Korea Telecom follows with 47 routers,

and Level 3 with 35. When weighted by the number of traces that traverse these loops,

192

almost 10% of the routers again belong to CRNET, almost twice as many as the next-

most frequent location, Frontier Communications of America (AS 5650).

7.7 Validation

In this section, we validate the output of DisCarte in terms of accuracy and complete-

ness. We first compare the aliases produced by DisCarte to those produced by Rocket-

fuel’s ally tool [138]. Then, we compare the routers, links, and degree distribution of

topologies inferred by DisCarte and the Rocketfuel and Passenger techniques against

four published topologies.

Of course, any active IP-probing methodology will suffer from inherent shortcom-

ings: that backup paths and link-layer redundancy are visible, and that multiple-access

network links are not differentiated from point-to-point links. DisCarte does not ad-

dress these problems, so we do not consider them further.

7.7.1 RR Aliases

We use the IP-identifier [92, 138] and source-address matching [109, 61] alias reso-

lution techniques to verify the aliases inferred by DisCarte. DisCarte over the BGP-

prefixes data set found 374,337 aliases, 42,284 (11.2%) of which were not found by

direct probe-based techniques in Rocketfuel’s ally.

We then re-applied ally to confirm the aliases asserted by DisCarte: 88.3% were

confirmed to be correct, 3.8% were claimed to not be aliases by the IP-identifier tech-

nique, and the remaining 7.8% were from unresponsive routers and could not be con-

firmed. 91.2% of the aliases found by DisCarte involved IP addresses discovered only

by adding the RR option.

193

7.7.2 Comparison to Published Topologies

Research networks including Abilene1, Géant2, National LambdaRail (NLR)3, and Ca-

narie (CANET)4 publish the configuration files of their routers, which makes determin-

ing a “correct” topology possible. We compare DisCarte’s inferred map to these true

topologies as well as the topologies produced by the Rocketfuel [138] and Passen-

ger [133] techniques. To build the correct topology, we parse the “show interfaces”

information available for each router from each network’s web site. We use publicly

available software to generate Rocketfuel5 and Passenger6 topologies. In each network,

we consider the number and accuracy of discovered routers, the degree distribution,

and completeness of the discovered links.

For each network, we classify each inferred router into one of four accuracy cate-

gories: good, merged, split, and missed.

Good: There is a one-to-one mapping between this inferred router and a router in the

correct topology. All of this router’s discovered interfaces are correctly aliased.

In a perfectly inferred topology, all routers would be good.

Merged: There is a one-to-many mapping between this inferred router and routers

in the correct topology. In this case, multiple real-world routers are incorrectly

inferred as a single router. Merged routers result from inaccurate alias resolution,

artificially deflate the router count, and inflate the node degree distribution.

1http://vn.grnoc.iu.edu/xml/abilene/show interfaces.xml

2http://stats.geant2.net/lg/process.jsp

3http://routerproxy.grnoc.iu.edu

4http://dooka.canet4.net

5http://www.cs.washington.edu/research/networking/rocketfuel/

6http://www.cs.umd.edu/projects/sidecar

194

http://vn.grnoc.iu.edu/xml/abilene/show_interfaces.xml
http://stats.geant2.net/lg/process.jsp
http://routerproxy.grnoc.iu.edu
http://dooka.canet4.net
http://www.cs.washington.edu/research/networking/rocketfuel/
http://www.cs.umd.edu/projects/sidecar

NLRGeantCANETAbiliene -2
0

 0
 2

0
 4

0
 6

0
 8

0
 1

00

M
is

si
ng

G
oo

d
M

er
ge

d
S

pl
it

D
is

C
ar

te

R
oc

ke
tfu

el

P
as

se
ng

er

R
ea

lit
y

D
is

C
ar

te

R
oc

ke
tfu

el

P
as

se
ng

er

R
ea

lit
y

D
is

C
ar

te

R
oc

ke
tfu

el

P
as

se
ng

er

R
ea

lit
y

D
is

C
ar

te

R
oc

ke
tfu

el

P
as

se
ng

er

R
ea

lit
y

Fi
gu

re
7.

7:
N

um
be

ro
fd

is
co

ve
re

d
ro

ut
er

s
(p

ar
tit

io
ne

d
by

ac
cu

ra
cy

cl
as

si
fic

at
io

n)
co

m
pa

re
d

to
pu

bl
is

he
d

to
po

lo
gi

es
.

195

Split: There is a many-to-one mapping between routers in the inferred topology and a

single router in the correct topology. In this case, a single router from the correct

topology appears split into multiple routers in the inferred topology. Split routers

result from incomplete alias information, inflate the router count, and deflate the

node degree distribution.

Missed: This router was not found: none of the router’s interfaces were discovered by

the inferred topology. Missing routers result from insufficient vantage points or

from data discarded due to unresolved conflicts (Section 7.5.2). Missing routers

deflate the router count and bias the node degree distribution towards observed

routers.

Classifying the number of inferred routers by accuracy (Figure 7.7) illustrates three

interesting characteristics. First, although all three inference schemes tend to have

substantial numbers of “split” routers, Rocketfuel has so many split routers that it

incorrectly over-estimates the router count by as much as seven times the true value.

This is a result of routers that are unresponsive to direct alias probing, so no aliases are

found (recall Figure 7.1). So, although aliases from DisCarte result in a more accurate

topology, more complete alias resolution techniques are still required. Second, for each

topology, DisCarte has more “good” nodes than other techniques, except for Passenger

in the Géant network. In this exception, Passenger finds two more “good” nodes then

DisCarte, at the cost of four incorrectly merged nodes. We demonstrate below that the

presence of merged routers alters the topology’s degree distribution. Third, DisCarte-

inferred topologies have no merged routers and fewer split routers than Rocketfuel.

Next, we consider the degree distribution of inferred topologies. Degree distribu-

tion affects the accuracy of Internet-modeling [93] and path diversity studies [149], and

has been studied in its own right [47]. We plot the degree distribution of the topologies

196

 1 1
0

 1
00

 1
 1

0
 1

00

Percent of Routers - log(ccdf)

A
bi

le
ne

 R
ou

te
r

D
eg

re
e

-
lo

g(
x)

P
as

se
ng

er
D

is
C

ar
te

R
ea

lit
y

R
oc

ke
tfu

el

 1 1
0

 1
00

 1
 1

0
 1

00

Percent of Routers - log(ccdf)

C
A

N
E

T
 R

ou
te

r
D

eg
re

e
-

lo
g(

x)

P
as

se
ng

er
D

is
C

ar
te

R
ea

lit
y

R
oc

ke
tfu

el

 1 1
0

 1
00

 1
 1

0
 1

00

Percent of Routers - log(ccdf)

G
ea

nt
 R

ou
te

r
D

eg
re

e
-

lo
g(

x)

M
er

ge
d

R
ou

te
rs

P
as

se
ng

er
D

is
C

ar
te

R
ea

lit
y

R
oc

ke
tfu

el

 1 1
0

 1
00

 1
 1

0
 1

00

Percent of Routers - log(ccdf)

N
LR

 R
ou

te
r

D
eg

re
e

-
lo

g(
x)P

as
se

ng
er

D
is

C
ar

te
R

ea
lit

y
R

oc
ke

tfu
el

Fi
gu

re
7.

8:
D

eg
re

e
di

st
ri

bu
tio

n
by

in
fe

re
nc

e
te

ch
ni

qu
e

of
A

bi
le

ne
,

C
A

N
E

T,
G

éa
nt

,
an

d
N

L
R

ne
tw

or
ks

.
D

is
C

ar
te

-i
nf

er
re

d

to
po

lo
gi

es
be

st
re

fle
ct

re
al

ity
.

197

Abilene CANET4 Géant NLR

Links: Found 21 11 45 21

Total 33 16 62 22

(%) 63% 69% 72% 95%

False Links 0 0 0 0

Table 7.2: Completeness of DisCarte-inferred links.

inferred by Rocketfuel, Passenger, and DisCarte along with the actual degree distribu-

tion for each published topology (Figure 7.8). In all networks, the DisCarte inferred

topology most closely tracks the actual degree distribution relative to the other two

techniques. Also, the effect of merged routers on the degree distribution is appar-

ent: Passenger deviates significantly from reality in the Géant data set due to the four

merged routers it infers.

Of four published topologies, our inferred topology has no false links (Table 7.2),

and discovers at least 63% of existing links. We believe the only way to improve the

completeness of the link coverage is to increase the number of measurement vantage

points and their network diversity.

Comparison to research networks at first does not appear inherently challenging:

their openness, homogeneity, and proximity to most PlanetLab vantage points make

them relatively easy validation cases. However, each research network is distant from

several vantage points, which are often behind interesting configurations (specifically

those sites in China and Israel) that can introduce false links and aliases. Further,

routers of specific research networks (Abilene,NLR,CANET) do not respond to alias

resolution probes, which confounds topology inference.

198

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

F
ra

ct
io

n
of

 n
od

es

Node degree

Near Data
All Data

Far Data

Figure 7.9: Bias in DisCarte-computed topology.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

F
ra

ct
io

n
of

 n
od

es

Node degree

Near Data
All Data

Far Data

Figure 7.10: Bias in Rocketfuel-computer topology.

199

7.8 Topology Analysis

In this section, we consider the degree distribution and sampling bias apparent in our

DisCarte-inferred topology. We chose these properties because they could be affected

by the missing or erroneous aliases.

Lakhina et al. [84] introduce a method for evaluating measured network topologies

to see sampling bias in the degree distributions of routers. The fundamental assump-

tion is that high-degree routers are equally likely to be anywhere in the topology, and

specifically, are no more likely to be near to the sources than farther away. A biased

sample would tend to see many of the links incident to nearby routers, because the

shortest path tree from a source is more likely to include the links of nearby routers,

and less likely to include more than two links on distant routers.

We repeat the analysis of Lakhina et al. and find sampling bias in both DisCarte-

and Rocketfuel-inferred topologies. In Figures 7.9 and 7.10, we show the comple-

mentary cumulative distribution of the router out-degrees of routers in the near set

(those within the median distance from a vantage point), in the far set (those of me-

dian or greater distance), and overall. That the near set has somewhat higher degree

demonstrates sampling bias in the topology. This suggests that more data rather than

higher-quality topologies are required to remove bias.

We expect sampling bias to be present in the topology we measure. The best ap-

proach to eliminating such a bias is most likely to wildly increase the number of van-

tage points relative to the destinations as performed in Rocketfuel [138]. Even when

doing so, sampling bias is not eliminated: Lakhina’s test found bias in all studied

topologies.

200

7.9 Related Work

We classify related work into network mapping techniques, measurement-based infer-

ences, error-avoidance in traceroute, and error characterization in network maps.

7.9.1 Internet Mapping

Techniques for Internet mapping present various techniques for selecting traceroute

measurements and resolving aliases. In 1995, Pansiot and Grad [109] pioneered net-

work mapping by tracerouting to approximately 3000 destinations and introduced alias

resolution by source address. Govindan and Tangmunarunkit’s Mercator [61] revo-

lutionized mapping through source-routed probes, alias discovery by source routing,

and validation against real-world networks CalREN and Los Nettos. Rocketfuel [138]

sought fidelity of ten ISP maps by exploiting traceroute servers and added alias res-

olution by IP address. Skitter [38] and iPlane [92] apply many of these techniques

continuously, making a current reference topology available to researchers.

DisCarte is comparable to these projects in that it introduces a new and more com-

plete technique for improving the correctness of the network mapping and a novel

method for alias resolution. We approached correctness in the measured topology by

measuring each path using two methods (RR and TR) so that we can detect and remove

disputed conclusions. These features are crucial to continued network instrumentation

because (a) security concerns cause administrators to filter traffic destined for routers

and (b) the scale of the network demands such a large scale measurement that some

collected traces are certain to have errors, and unlike in the natural sciences, these

errors are not averaged out by further measurements.

201

7.9.2 Learning and Inference Techniques

Techniques to interpret raw network measurements are sometimes required; these of-

ten involve learning techniques to manage the scale of the problem. Padmanabhan

used Gibbs sampling and Bayesian learning to discover lossy links [107]. Mahajan et

al. [94] used linear constraints to model intra-domain link weights: a study that could

imply a means of detecting and removing false links (those that have too high a cost to

be used). Yao et al. [157] present a technique for merging anonymous routers—those

that do not respond to traceroute that might otherwise be ignored in a topology (poten-

tially partitioning the network) or thought unique on each observation (wildly inflating

the path diversity). Finally, Gunes and Sarac [65] use the addressing structure of the

network to deduce the prefixes to which interface addresses belong and infer aliases.

7.9.3 Traceroute Error Avoidance

Although we apply the paired measurement of TR and RR to bolster uncertain mea-

surements, an alternate, but complementary, approach is to reduce the likelihood of

error in the first place. Augustin et al. [15] observe that router load balancing is typi-

cally flow based: to restrict a traceroute to a single path requires only re-designing the

tool to preserve the five-tuple of protocol with source and destination address and port.

Sherwood and Spring showed that RR had the potential to detect route changes

and could be applied toward a more reliable traceroute [133], but found that simple

(deterministic) methods became intractable and was unable to process almost 40% of

their data.

202

7.9.4 Network Map Errors

Some errors in network maps may be avoided through improved techniques. Teixeira

et al. [149] noted a lack of fidelity in Rocketfuel maps between incomplete measure-

ment (backup links were missing) with incomplete or erroneous alias resolution (some

addresses were split and merged); in estimating path diversity, these factors canceled

each other somewhat, but the result was not reliable.

7.10 Record Route Redesign

If the record route IP option were designed today, it would benefit from more precise

standardization and the ability to sample paths longer than 9 hops.

Address alignment would be trivial if record route implementations were standard-

ized (and such standards were adhered to). We believe the implementation diversity

in record route (Section 7.3) is there because RFC 791 does not specify how to treat

options on expiring packets. For topology discovery, the most appealing RR imple-

mentation is that of Juniper, where addresses are recorded for expiring packets. If this

scheme were universal, an alias could be discovered with a single packet.

A more powerful record-route option would include the ability to “skip” a config-

urable number of addresses before starting to record. In this way, successive RR probes

could record 9 hop subsections of a path, giving complete RR information from end to

end, as opposed to the current 9 hop limit. Implementation is simple: routers need only

increment the RR array index pointer even if the RR array is full, allowing the index

to wrap. Thus, the sender sets the initial RR pointer value to 4− (4× k) mod 256 to

skip k hops before starting to record the route. Recall that a router along the path only

records the route if the pointer value p is in the range 4 ≤ p < l where l is the length

203

of the RR option in the IP header.

7.11 Conclusion

Internet topology measurement faces a continuing problem of scale: more nodes and

links are added; measurement platforms like PlanetLab grow; and filtering policies and

implementations remain diverse. To capture this topology requires not simply the abil-

ity to collect, store, and query against the 1.3 billion response packets in our data-set,

but also the ability to filter this data to discern which observations and interpretations

are valid. Toward this goal, we adopted disjunctive logic programming to merge our

expectations of network engineering practice—common vendor choice and address

prefix assignment—to interpret and merge our topology data.

DisCarte provides a novel cross-validation tool for network topology discovery—it

finds aliases that increasingly cannot be detected by active probing (30% of addresses

we found could not be probed), it finds routers that do not decrement TTL (329) or

generate ICMP errors (2,440), it verifies that probed paths are consistent during a

measurement—but extracting this information requires significant effort. Expectations

of network engineering practice provide the hints required to interpret this data accu-

rately, and a divide-and-conquer approach allows the flexible interpretation to take

place quickly over subsets of the data and resolve contradictions.

Our effort owes its inspiration to Vern Paxson’s Strategies for Sound Internet Mea-

surement [113]. Our approach that led to DisCarte is to measure the same path and

topology using two different methods so that their consistency can ensure an accurate

result (one of Paxson’s “calibration” strategies). Along the way, we adopted many of

his hints: study small components first (the PlanetLab topology before the Internet;

204

small cliques before larger ones), invest in visualization (we used neato and dot [62]

to compare topologies), build test suites (our regression tests include 77 difficult-to-

interpret traces and groups of traces), and we will publish our data and analysis scripts.

Our future work is to develop two related components: an application-specific

version of our (inefficient but general-purpose) DLP-based solver, and a more effi-

cient measurement interpretation scheduler that would choose to study related mea-

surements together to reduce the computational requirements of the analysis. In this

first application of record route in topology measurement, getting the right answer took

precedence over performance; making the measurements and analysis efficient enough

to be repeated will take engineering.

205

BIBLIOGRAPHY

[1] A. Abdul-Rahman and S. Hailes. Supporting Trust in Virtual Communities. In

Proceedings Hawaii International Conference on System Sciences 33, 2000.

[2] K. Aberer and Z. Despotovic. Managing trust in a Peer-2-Peer information

system. In H. Paques, L. Liu, and D. Grossman, editors, Proceedings of the

Tenth International Conference on Information and Knowledge Management

(CIKM-01), pages 310–317, New York, Nov. 5–10 2001. ACM Press.

[3] Abilene. http://abilene.internet2.edu.

[4] Abilene router configurations. http://http://pea.grnoc.iu.edu/

Abilene.

[5] E. Adar and B. Huberman. Free riding on gnutella. Technical report, Xerox

PARC, August 2000.

[6] S. Ailleret. Larbin: Multi-purpose web crawler. http://larbin.

sourceforge.net/.

[7] See www.akamai.com.

[8] http://www.akamai.com/en/html/technology/overview.

html.

206

http://abilene.internet2.edu
http://http://pea.grnoc.iu.edu/Abilene
http://http://pea.grnoc.iu.edu/Abilene
http://larbin.sourceforge.net/
http://larbin.sourceforge.net/
www.akamai.com
http://www.akamai.com/en/html/technology/overview.html
http://www.akamai.com/en/html/technology/overview.html

[9] A. Akella, S. Seshan, and A. Shaikh. An empirical evaluation of wide-

area internet bottlenecks. In Internet Measurement Conference. ACM SIG-

COMM/USENIX, 2003.

[10] T. H. P. R. Alliance. Know your enemy: Tracking botnets. http://www.

honeynet.org/papers/bots/.

[11] M. Allman and V. Paxson. On Estimating End-to-End Network Path Properties.

In SIGCOMM, pages 263–274, 1999.

[12] K. C. Almeroth, M. H. Ammar, and Z. Fei. Scalable delivery of web pages using

cyclic best-effort multicast. In Proceedings of INFOCOM, pages 1214–1221,

1998.

[13] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Resilient

overlay networks. In SOSP, pages 131–145, Banff, Alberta, Canada, Oct. 2001.

[14] D. Applegate and E. Cohen. Making intra-domain routing robust to changing

and uncertain traffic demands: Understanding fundamental tradeoffs. In ACM

SIGCOMM, pages 313–324, Karlsruhe, Germany, Aug. 2003.

[15] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy,

C. Magnien, and R. Teixeir. Avoiding traceroute anomalies with Paris tracer-

oute. In IMC, 2006.

[16] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, and R. H. Katz.

TCP behavior of a busy Internet server: Analysis and improvements. In INFO-

COM, San Francisco, CA, Mar. 1998.

[17] S. Banerjee, B. Bhattacharjee, and C. Kommreddy. Scalable Application Layer

Multicast. In Proceedings of ACM SIGCOMM, 2002.

207

http://www.honeynet.org/papers/bots/
http://www.honeynet.org/papers/bots/

[18] S. Banerjee, B. Bhattacharjee, and S. Parthasarathy. A Protocol for Scalable

Application Layer Multicast. CS-TR 4278, Department of Computer Science,

University of Maryland, College Park, 2001.

[19] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller. Con-

struction of an efficient overlay multicast infrastructure for real-time applica-

tions. In Proc. IEEE Infocom, June 2003.

[20] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Resilient multicast

using overlays. ACM Sigmetrics, June 2003.

[21] S. Bhattacharjee, K. Calvert, and E. Zegura. Self-organizing wide-area network

caches. In IEEE Infocom’98, 1998.

[22] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the Association for Computing Machinery, 13(7):422–426,

1970.

[23] B. Bollobas. Random Graphs. Academic Press, 1985.

[24] R. P. Bonica and D.-H. Gan. ICMP extensions for multiprotocol label switching.

Internet Draft (work in progress): draft-ietf-mpls-icmp-05, Mar. 2006.

[25] R. P. Bonica, D.-H. Gan, P. Nikander, D. C. Tappan, and C. Pignataro. Modi-

fying ICMP to support multi-part messages. Internet Draft (work in progress):

draft-bonica-internet-icmp-08, Aug. 2006.

[26] R. P. Bonica, D.-H. Gan, and D. C. Tappan. Icmp extensions for multiproto-

col label switching. Internet Draft (work in progress): draft-ietf-mpls-icmp-05,

Mar. 2006.

208

[27] B. Braden, D. Clark, and S. Shenker. Rfc1633: Integrated Services in the Inter-

net Architecture: an Overview.

[28] L. Brakmo and L. Peterson. TCP Vegas: End to end congestion avoidance

on a global Internet. IEEE Journal on Selected Areas in Communication,

13(8):1465–1480, Oct. 1995.

[29] See www.bittorrent.com.

[30] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. Informed content de-

livery across adaptive overlay networks. In J. Wroclawski, editor, Proceedings

of the ACM SIGCOMM 2002 Conference on Applications, Technologies, Archi-

tectures, and Protocols for Computer Communications (SIGCOMM-02), vol-

ume 32, 4 of Computer Communication Review, pages 47–60, New York, Aug.

19–23 2002. ACM Press.

[31] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain ap-

proach to reliable distribution of bulk data. In Proceedings of the ACM SIG-

COMM ’98 conference on Applications, technologies, architectures, and proto-

cols for computer communication, pages 56–67. ACM Press, 1998.

[32] F. Calimeri, W. Faber, N. Leone, and G. Pfeifer. Pruning operators for disjunc-

tive logic programming systems. Fundamenta Informaticae, 71(2-3):183–214,

2006.

[33] R. L. Carter and M. E. Crovella. Dynamic server selection using bandwidth

probing in wide-area networks. In INFOCOM, Kobe, Japan, Apr. 1997.

209

www.bittorrent.com

[34] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE: A large-

scale and decentralized application-level multicast infrastructure. IEEE Journal

on Selected Areas in communications (JSAC), 2002.

[35] W. chang Feng, D. Kandlur, D. Saha, and K. Shin. Stochastic Fair Blue: A

Queue Management Algorithm for Enforcing Fairness. In INFOCOM, pages

1520–1529, Anchorage, AK, Apr. 2001.

[36] Y.-H. Chu, S. G. Rao, and H. Zhang. A Case for End System Multicast. In

Proceedings of ACM SIGMETRICS, June 2000.

[37] Personal e-mail from Cisco engineers.

[38] k. claffy, T. E. Monk, and D. McRobb. Internet tomography. Nature, Web Mat-

ters, Jan. 1999. http://www.nature.com/nature/webmatters/

tomog/tomog.html.

[39] D. D. Clark. The Design Philosophy of the DARPA Internet Protocols. In ACM

SIGCOMM, pages 106–114, Stanford, CA, Aug. 1988.

[40] http://codeen.cs.princeton.edu/talks/iris pl.

[41] B. Cohen. Incentives build robustness in bittorrent. In P2P Economics Work-

shop, 2003.

[42] Computer Science and Telecommunications Board, National Research Coun-

cil. Looking Over the Fence at Networks: A Neighbor’s View of Networking

Research. The National Academies Press, 2001.

[43] L. Cox and B. Noble. Samsara: Honor among thieves in peer-to-peer storage.

In SOSP, Bolton Landing, NY, Oct. 2003.

210

http://www.nature.com/nature/webmatters/tomog/tomog.html
http://www.nature.com/nature/webmatters/tomog/tomog.html
http://codeen.cs.princeton.edu/talks/iris_pl

[44] S. Deering and D. Cheriton. Multicast Routing in Datagram Internetworks and

Extended LANs. In ACM Transactions on Computer Systems, May 1990.

[45] http://www.dbai.tuwien.ac.at/proj/dlv/examples/3col.

[46] B. Donnet, P. Raoult, T. Friedman, and M. Crovella. Efficient algorithms for

large-scale topology discovery. In ACM SIGMETRICS, Banff, Canada, June

2005.

[47] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the

Internet topology. In ACM SIGCOMM, pages 251–262, Cambridge, MA, Sept.

1999.

[48] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A scalable wide-

area web cache sharing protocol. Computer Communications Review (Proceed-

ings of SIGOCOMM’98), 28(4):254–265, Sept. 1998.

[49] W.-C. Feng, D. Kandlur, D. Saha, and K. G. Shin. BLUE: An Alternative Ap-

proach to Active Queue Management. In NOSSDAV ’01: Proceedings of the

11th international workshop on Network and operating systems support for dig-

ital audio and video, pages 41–50, New York, NY, USA, 2001. ACM.

[50] S. Floyd. TCP and explicit congestion notification. ACM CCR, 24(5):10–23,

Oct. 1994.

[51] S. Floyd and K. Fall. Promoting the Use of End-to-End Congestion Control in

the Internet. IEEE/ACM Transactions on Networking, 7(4):458–472, 1999.

[52] S. Floyd and V. Jacobson. Random early detection gateways for congestion

avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, Aug. 1993.

211

http://www.dbai.tuwien.ac.at/proj/dlv/examples/3col

[53] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. Reliable multicast

framework for light-weight sessions and application level framing. In Proceed-

ings of SIGCOMM, Cambridge, Massachusetts, Sept. 1995.

[54] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An extension to the selective

acknowledgement (SACK) option for TCP. IETF RFC-2883, July 2000.

[55] R. Fonseca, G. M. Porter, R. H. Katz, S. Skenker, and I. Stoica. IP Options

are not an option. Technical Report UCB/EECS-2005-24, EECS Department,

University of California, Berkeley, Dec. 2005.

[56] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing content pub-

lication with Coral. In NSDI, San Francisco, CA, Mar. 2004.

[57] E. Friedman and P. Resnick. The social cost of cheap pseudonyms. Journal of

Economics and Management Strategy, 10(2):173–199, 1998.

[58] L. Gao and F. Wang. The extent of AS path inflation by routing policies. In

IEEE Global Telecommunications Conference (GLOBECOM) Global Internet

Symposium, volume 3, pages 2180–2184, Taipei, Taiwan, Nov. 2002.

[59] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, 1979.

[60] Gnutella Home Page. See http://gnutella.wego.com.

[61] R. Govindan and H. Tangmunarunkit. Heuristics for Internet map discovery. In

INFOCOM, pages 1371–1380, Tel Aviv, Israel, Mar. 2000.

[62] Graphviz. http://www.graphviz.org.

212

http://gnutella.wego.com
http://www.graphviz.org

[63] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J. Zahorjan. Mea-

surement, modeling, and analysis of a peer-to-peer file-sharing workload. In

SOSP, Bolton Landing, NY, Oct. 2003.

[64] M. Gunes and K. Sarac. Analytical IP alias resolution. In IEEE Int’l Conference

on Communication, June 2006.

[65] M. H. Gunes and K. Sarac. Analytical IP alias resolution. In IEEE International

Conference on Communications (ICC), pages 11–15, 2006.

[66] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang. Locating internet

bottlenecks: algorithms, measurements, and implications. In ACM SIGCOMM,

pages 41–54, Portland, OR, Aug. 2004.

[67] N. Hu, O. Spatscheck, J. Wang, and P. Steenkiste. Locating Internet bottlenecks:

Algorithms, measurements, and implications. In ACM SIGCOMM, Portland,

OR, Aug. 2004.

[68] M. Huang. VNET: PlanetLab virtualized network access. http://www.

planet-lab.org/doc/vnet.php, May 2005.

[69] V. Jacobson. Pathchar. ftp://ftp.ee.lbl.gov/pathchar/.

[70] V. Jacobson. Traceroute. ftp://ftp.ee.lbl.gov/traceroute.tar.

Z.

[71] V. Jacobson. Congestion Avoidance and Control. ACM Computer Communi-

cation Review; Proceedings of the Sigcomm ’88 Symposium in Stanford, CA,

August, 1988, 18, 4:314–329, 1988.

213

http://www.planet-lab.org/doc/vnet.php
http://www.planet-lab.org/doc/vnet.php
ftp://ftp.ee.lbl.gov/pathchar/
ftp://ftp.ee.lbl.gov/traceroute.tar.Z
ftp://ftp.ee.lbl.gov/traceroute.tar.Z

[72] V. Jacobson. Congestion Avoidance and Control. In Proceedings, SIGCOMM

’88 Workshop, pages 314–329. ACM SIGCOMM, ACM Press, Aug. 1988.

Stanford, CA.

[73] V. Jacobson, R. Braden, and D. Borman. TCP extensions for high performance.

IETF RFC-1323, May 1992.

[74] R. Jain and K. K. Ramakrishnan. Congestion avoidance in computer networks

with a connectionless network layer: Concepts,. Proceedings of the Computer

Networking Symposium; IEEE; Washington, DC, pages 134–143, 1988.

[75] C. Jin, Q. Chen, and S. Jamin. Inet: Internet topology generator. Technical

Report CSE-TR-433-00, University of Michigan, EECS dept., 2000. http:

//topology.eecs.umich.edu/inet/inet-2.0.pdf.

[76] D. Kaminsky. Paratrace. http://www.doxpara.com/read.php/

docs/paratrace.html, Nov 2002.

[77] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust Algo-

rithm for Reputation Management in P2P Networks. In Proceedings of the

Twelfth International World Wide Web Conference (WWW), 2003.

[78] E. Katz-Bassett, J. P. John, A. Krishnamurthy, D. Wetherall, T. Anderson, and

Y. Chawathe. Towards ip geolocation using delay and topology measurements.

In IMC ’06: Proceedings of the 6th ACM SIGCOMM conference on Internet

measurement, pages 71–84. ACM, 2006.

[79] See www.kazaa.com.

[80] K. Keys. iffinder. http://www.caida.org/tools/measurement/

iffinder/, Mar. 2006.

214

http://topology.eecs.umich.edu/inet/inet-2.0.pdf
http://topology.eecs.umich.edu/inet/inet-2.0.pdf
http://www.doxpara.com/read.php/docs/paratrace.html
http://www.doxpara.com/read.php/docs/paratrace.html
www.kazaa.com
http://www.caida.org/tools/measurement/iffinder/
http://www.caida.org/tools/measurement/iffinder/

[81] A. Kuzmanovic and E. Knightly. Low-Rate TCP-Targeted Denial of Service

Attacks. In ACM SIGCOMM, pages 75–86, Portland, OR, Aug. 2004.

[82] K. Lai and M. Baker. Measuring link bandwidths using a deterministic model

of packet delay. In Proceedings of SIGCOMM, pages 283–294, 2000.

[83] K. Lai and M. Baker. Nettimer: A tool for measuring bottleneck link bandwidth.

In USITS, pages 123–134, San Francisco, CA, Mar. 2001.

[84] A. Lakhina, J. Byers, M. Crovella, and P. Xie. Sampling biases in IP topology

measurements. In INFOCOM, pages 332–341, San Francisco, CA, Apr. 2003.

[85] N. Leibowitz, M. Ripeaunu, and A. Wierzbicki. Deconstructing the kazaa net-

work. In 3rd IEEE Workshop on Internet Application. IEEE, 2003.

[86] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.

The DLV system for knowledge representation and reasoning. ACM Trans.

Computational Logic, 7(3):499–562, 2006.

[87] J. Liang, R. Kumar, and K. W. Ross. The KaZaA Overlay: A Measurement

Study. http://cis.poly.edu/∼ross/papers/KazaaOverlay.

pdf.

[88] http://www.tcpdump.org.

[89] M. Lichtenberg and J. Curless. DECnet Transport Architecture. Digital Techni-

cal Journal, 4(1), 1992.

[90] http://www.limewire.com/english/content/netsize.

shtml.

215

http://cis.poly.edu/~ross/papers/KazaaOverlay.pdf
http://cis.poly.edu/~ross/papers/KazaaOverlay.pdf
http://www.tcpdump.org
http://www.limewire.com/english/content/netsize.shtml
http://www.limewire.com/english/content/netsize.shtml

[91] M. Litzkow, M. Livny, and M. Mutka. Condor: A hunter of idle workstations.

In ICDCS, 1988.

[92] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishna-

murthy, and A. Venkataramani. iPlane: An information plane for distributed

services. In OSDI, Seattle, WA, Nov. 2006.

[93] P. Mahadevan, D. Kriokov, K. Fall, and A. Vahdat. Systematic topology analysis

and generation using degree correlations. In SIGCOMM’06, 2006.

[94] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. Inferring link weights

using end-to-end measurements. In IMW, pages 231–236, Marseille, France,

Nov. 2002.

[95] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-level Internet path

diagnosis. In SOSP, pages 106–119, Bolton Landing, NY, Oct. 2003.

[96] Z. M. Mao, J. Rexford, J. Wang, and R. Katz. Towards an accurate AS-level

traceroute tool. In ACM SIGCOMM, pages 365–378, Karlsruhe, Germany, Aug.

2003.

[97] S. Marsh. Formalising Trust as a Computational Concept. PhD thesis, Univer-

sity of Sterling, 1994.

[98] M. Mathis, J. Mahdavi, S. Floyd, and A. Ramanov. RFC2018: TCP Selective

Acknowledgment Options, October 1996.

[99] A. Medina, M. Allman, and S. Floyd. Measuring the evolution of transport

protocols in the Internet. ACM CCR, Apr. 2005.

216

[100] A. Medina, I. Matta, and J. Byers. BRITE: A flexible generator of Internet

toplogies. Technical Report BU-CS-TR-2000-005, Boston University, 2000.

[101] D. Meyer. University of Oregon Route Views project. http://www.

routeviews.org/.

[102] S. B. Moon, P. Skelly, and D. Towsley. Estimation and removal of clock skew

from network delay measurements. In INFOCOM, New York, NY, Mar. 1999.

[103] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver.

Inside the Slammer Worm. See http://www.caida.org/outreach/

papers/2003/sapphire2/.

[104] R. Morselli, B. Bhattacharjee, A. Srinivasan, and M. A. Marsh. Efficient lookup

on unstructured topologies. In ACM Symposium on Principles of Distributed

Computing (PODC), pages 77–86, New York, NY, USA, 2005.

[105] A. Nakao, L. Peterson, and A. Bavier. A routing underlay for overlay networks.

In ACM SIGCOMM, pages 11–18, Karlsruhe, Germany, Aug. 2003.

[106] Nanog email: Dos? http://www.merit.edu/mail.archives/

nanog/2003-01/msg00594.html.

[107] V. N. Padmanabhan, L. Qiu, and H. J. Wang. Passive network tomography using

bayesian inference. In IMW, pages 93–94, Marseille, France, Nov. 2002.

[108] V. N. Padmanabhan and K. Sripanidkulchai. The case for cooperative network-

ing. In IPTPS, 2002.

[109] J.-J. Pansiot and D. Grad. On routes and multicast trees in the Internet. ACM

CCR, 28(1):41–50, Jan. 1998.

217

http://www.routeviews.org/
http://www.routeviews.org/
http://www.caida.org/outreach/papers/2003/sapphire2/
http://www.caida.org/outreach/papers/2003/sapphire2/
http://www.merit.edu/mail.archives/nanog/2003-01/msg00594.html
http://www.merit.edu/mail.archives/nanog/2003-01/msg00594.html

[110] V. Paxson. End-to-end routing behavior in the Internet. IEEE/ACM Transactions

on Networking, 5(5):601–615, 1997.

[111] V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time. Com-

puter Networks, 31:2435–2463, December 1999.

[112] V. Paxson. An Analysis of Using Reflectors for Distributed Denial-of-service

attacks. ACM Computer Communications Review (CCR), 31(3), July 2001.

[113] V. Paxson. Strategies for sound Internet measurement. In IMC, pages 263–271,

Taormina, Sicily, Italy, Oct. 2004.

[114] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for introducing

disruptive technology into the Internet. In HotNets, pages 59–64, Princeton, NJ,

Oct. 2002.

[115] http://pdos.csail.mit.edu/∼strib/pl app.

[116] J. Postel, editor. Internet protocol specification. IETF RFC-791, Sept. 1981.

[117] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable

content addressable network. In In Proceedings of the ACM SIGCOMM 2001

Technical Conference, 2001.

[118] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multi-

cast using content-addressable networks. In Proceedings of 3rd International

Workshop on Networked Group Communications, Nov. 2001.

[119] D. Reed. ”Small TCP Packets == very large overhead == DoS?”, July 2001.

See http://www.securityfocus.com/archive/1/195457.

218

http://pdos.csail.mit.edu/~strib/pl_app
http://www.securityfocus.com/archive/1/195457

[120] X. Rex Xu, A. Myers, H. Zhang, and R. Yavatkar. Resilient multicast support

for continuous-media applications. In Proceedings of NOSSDAV, St. Louis,

Missouri, May 1997.

[121] Transmission control protocol specification. IETF RFC-793, 1981. ARPA

Working Group Requests for Comment DDN Network Information Center, SRI

International, Menlo Park, CA.

[122] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Sto-

ica, and H. Yu. OpenDHT: A Public DHT Service and Its Uses. In Proceedings

of ACM SIGCOMM 2005, August 2005.

[123] F. Ricca, W. Faber, and N. Leone. A backjumping technique for disjunc-

tive logic programming. The European Journal on Artificial Intelligence,

19(2):155–172, 2006.

[124] E. C. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching

architecture. IETF RFC-3031, Jan. 2001.

[125] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location

and routing for large-scale peer-to-peer systems. In IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware), pages 329–350,

November 2001.

[126] S. Savage. Sting: a TCP-based network measurement tool. In USITS, pages

71–79, Boulder, CO, Oct. 1999.

[127] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. TCP Congestion Con-

trol with a Misbehaving Receiver. Computer Communication Review, 29(5),

1999.

219

[128] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The end-to-

end effects of Internet path selection. In ACM SIGCOMM, pages 289–299,

Cambridge, MA, Sept. 1999.

[129] N. Shankar, C. Komareddy, and B. Bhattacharjee. Finding Close Friends over

the Internet. In Proceedings of International Conference on Network Protocols,

Nov. 2001.

[130] R. Sherwood and N. Spring. A Platform for Unobtrusive Measurements on Plan-

etLab. In USENIX Workshop on Real, Large Distributed Systems (WORLDS),

Nov. 2006.

[131] R. Sherwood and N. Spring. A platform for unobtrusive measurement on Plan-

etLab. In USENIX Workshop on Real, Large Distributed Systems (WORLDS),

Seattle, WA, Nov. 2006.

[132] R. Sherwood and N. Spring. Touring the Internet in a TCP Sidecar. In ACM

Internet Measurement Conference (IMC). ACM Press, 2006.

[133] R. Sherwood and N. Spring. Touring the Internet in a TCP sidecar. In IMC,

pages 339–344, Rio de Janeiro, Brazil, Oct. 2006.

[134] http://slurpie.sourceforge.net.

[135] Smurf Attack: See http://www.cert.org/advisories/

CA-1998-01.html.

[136] N. Spring, M. Dotcheva, M. Rodrig, and D. Wetherall. How to resolve IP

aliases. Technical Report 04–05–04, University of Washington Dept. CSE, May

2004.

220

http://www.cert.org/advisories/CA-1998-01.html
http://www.cert.org/advisories/CA-1998-01.html

[137] N. Spring, R. Mahajan, and T. Anderson. Quantifying the causes of path infla-

tion. In ACM SIGCOMM, pages 113–124, Karlsruhe, Germany, Aug. 2003.

[138] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with Rock-

etfuel. In ACM SIGCOMM, pages 133–146, Pittsburgh, PA, Aug. 2002.

[139] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP topolo-

gies with Rocketfuel. IEEE/ACM Transactions on Networking, 12(1):2–16, Feb.

2004.

[140] N. Spring, L. Peterson, A. Bavier, and V. Pai. Using PlanetLab for network

research: Myths, realities, and best practices. ACM SIGOPS Operating Systems

Review, 40(1):17–24, Jan. 2006.

[141] N. Spring, D. Wetherall, and T. Anderson. Reverse-engineering the Internet. In

HotNets, pages 3–8, Cambridge, MA, Nov. 2003.

[142] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A public Internet mea-

surement facility. In USITS, pages 225–238, Seattle, WA, Mar. 2003.

[143] Squid Web proxy cache. http://www.squid-cache.org/.

[144] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in Your Spare

Time. In USENIX Annual Technical Conference, Monterey, CA, June 2002.

[145] W. R. Stevens. RFC2001: TCP Slow Start, Congestion Avoidance, Fast Re-

transmit, and Fast Recovery Algorithms, January 1997.

[146] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:

A scalable peer-to-peer lookup service for internet applications. In Proceedings

of the ACM SIGCOMM ’01 Conference, San Diego, California, August 2001.

221

http://www.squid-cache.org/

[147] J. Strauss, D. Kitabi, and F. Kaashoek. A Measurement Study of Available

Bandwidth Estimation Tools. In IMC, 2003.

[148] H. Tangmunarunkit, R. Govindan, and S. Shenker. Internet path inflation due to

policy routing. In SPIE ITCOM Workshop on Scalability and Traffic Control in

IP Networks, volume 4526, pages 188–195, Denver, CO, Aug. 2001.

[149] R. Teixeira, K. Marzullo, S. Savage, and G. Voelker. In search of path diversity

in ISP networks. In IMC, pages 313–318, Miami, FL, Oct. 2003.

[150] http://www.cisco.com/web/strategy/government/wsca/

states/price list.html.

[151] http://www.ebay.com.

[152] L. Wang, K. Park, R. Pang, V. S. Pai, and L. Peterson. Reliability and secu-

rity in the CoDeeN content distribution network. In USENIX Annual Technical

Conference, Boston, MA, June 2004.

[153] X. Wang and M. K. Reiter. Mitigating bandwidth-exhaustion attacks using con-

gestion puzzles. In CCS ’04: Proceedings of the 11th ACM conference on

Computer and communications security, pages 257–267, New York, NY, USA,

2004. ACM Press.

[154] P. Watson. Slipping In The Window: TCP Reset Attacks. See http://www.

osvdb.org/reference/SlippingInTheWindow v1.0.doc.

[155] See http://www.gnu.org/software/wget/wget.html.

222

http://www.cisco.com/web/strategy/government/wsca/states/price_list.html
http://www.cisco.com/web/strategy/government/wsca/states/price_list.html
http://www.ebay.com
http://www.osvdb.org/reference/SlippingInTheWindow_v1.0.doc
http://www.osvdb.org/reference/SlippingInTheWindow_v1.0.doc
http://www.gnu.org/software/wget/wget.html

[156] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A Lightweight Network Lo-

cation Service without Virtual Coordinates. In ACM SIGCOMM, Philadelphia,

PA, Aug. 2005.

[157] B. Yao, R. Viswanathan, F. Chang, and D. Waddington. Topology inference in

the presence of anonymous routers. In INFOCOM, pages 353–363, San Fran-

cisco, CA, Apr. 2003.

[158] B. Yu and M. P. Singh. A social mechanism of reputation management in elec-

tronic communities. In Proceedings of Fourth International Workshop on Co-

operative Information Agents, 2000.

[159] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to model an internetwork.

In INFOCOM, San Francisco, CA, Sept. 1996.

[160] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the characteristics and

origins of Internet flow rates. In ACM SIGCOMM, Pittsburgh, PA, Aug. 2002.

[161] Y. Zhang, M. Roughan, C. Lund, and D. Donoho. An information-theoretic

approach to traffic matrix estimation. In ACM SIGCOMM, pages 301–312,

Karlsruhe, Germany, Aug. 2003.

[162] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. Katz, and J. Kubiatowicz. Bayeux:

An architecture for scalable and fault-tolerant wide-area dat a dissemination. In

Eleventh International Workshop on Network and Operating Systems Support

for Digital Audio and Video (NOSSDAV 2001), 2001.

[163] P. Zimmermann. Pretty good privacy user’s guide. Distributed with PGP soft-

ware, June 1993.

223

	List of Tables
	List of Figures
	Introduction
	Securing Resource Availability
	Improving Network Maps

	Shared Resources with Malicious Users: OptAck
	Introduction
	An Attack Based on Positive Feedback
	Road map

	Attack Analysis
	The Opt-Ack Attack
	Implementation Challenges
	Lazy Opt-Ack
	Distributed Opt-Ack Attack

	Amplification Factor
	Congestion Control Bounds
	Application Timeouts and Growing the Congestion Window

	Defending against Opt-Ack
	Solutions Overview
	 Proposed Solution: Randomly Skipped Segments
	Skipped Packet Implementation

	Attack Evaluation
	Simulation Results
	Real World Implementation
	Performance of Skipped Segments Solution

	Related Work
	Brute Force DoS Attacks
	Efficient Attacks

	Discussion and Conclusion
	Implementing Opt-Ack
	Recovery from Overruns
	Victim's Processing Time
	Multiple ACKs Per Window and the Transition Phase
	The Attacker's Local Bandwidth

	Shared Resources with Cooperative Users: Slurpie
	Introduction
	Approach
	Roadmap

	Related Work
	Multicast
	Infrastructure-based Solutions
	Peer-to-peer Bulk Transfer Protocols
	Erasure Encoding

	Slurpie: Protocol Details
	Mesh Formation and Update Propagation
	Group Size Estimation
	Downloading Decisions
	Backing Off
	Block Size
	Bandwidth Estimation Technique

	Experiments
	Slurpie Implementation
	Experimental Setup
	BitTorrent Setup
	Results
	PlanetLab Results
	Coordinated Backoff
	Group Size Estimation

	Discussion
	Topology Server
	Security Concerns

	Conclusions and Future Work

	Shared Resources with Selfish Users: NICE Cookies
	Introduction
	Cooperative Systems
	Model

	Related Work
	Overview of NICE
	NICE Users and Pricing Policies

	Distributed Trust Computation
	Inferring Trust on the Trust Graph
	Assigning Values to Cookies
	Distributed Trust Inference: Basic Algorithm
	Refinements

	Results
	Scalability
	Robustness

	Simulations on a Realistic System
	System Behavior
	Simulation Results

	Summary and Conclusions

	Resource Discovery Framework: Sidecar
	Introduction
	Sidecar Design
	Unobtrusive Probing
	Sidecar API

	Sidecar on PlanetLab
	Non-Issues
	Unanticipated Issues

	Sidecar Tools
	sideping: Round Trip Time Estimator
	artrat: Receiver-side bottleneck detection

	Conclusion and Future Work

	Resource Discovery With Record Route
	Introduction
	Mapping with RR
	Conventional Wisdom
	Simple Topology Discovery
	Router Behavior Inference

	Sidecar Design
	Passenger Design
	Passenger Logic
	Data Sources
	Safety

	Results
	Intrusiveness
	Record Route Coverage
	Correct Alias Resolution
	MPLS Results

	Conclusion and Future Work

	Topology Analysis with DisCarte
	Introduction
	Cross-Validating with DISCARTE
	Benefits of Cross-Validation
	Cross Validation Limitations: RR

	Address Alignment
	Under-Standardized RR Implementations
	Topology Traps
	Ambiguity in classification

	DISCARTE
	DLP Introduction
	Data Pre-processing
	Address Alignment with DLP
	Engineering Practices and Cost Function

	Scaling and Conflicts
	Divide and Conquer
	Unions and Conflicts

	Data Collection
	Data Sets
	Stoplist Probing
	Routing Loops

	Validation
	RR Aliases
	Comparison to Published Topologies

	Topology Analysis
	Related Work
	Internet Mapping
	Learning and Inference Techniques
	Traceroute Error Avoidance
	Network Map Errors

	Record Route Redesign
	Conclusion

	Bibliography

